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Introduction
!is book covers the entire syllabus of Cambridge 
International Examinations AS and A Level Physics. It is 
designed to work with the syllabus that will be examined 
from 2016. It is in three parts:

 ■ Chapters 1–16 and P1: the AS level content, covered in the 
first year of the course, including a chapter (P1) dedicated to 
the development of your practical skills

 ■ Chapters 17–32 and P2: the remaining A level content, 
including a chapter (P2) dedicated to developing your ability 
to plan, analyse and evaluate practical investigations

 ■ Appendices of useful formulae, a Glossary and an Index.

!e main tasks of a textbook like this are to explain the 
various concepts of physics that you need to understand 
and to provide you with questions that will help you to test 
your understanding and prepare for your examinations. 
You will "nd a visual guide to the structure of each chapter 
and the features of this book on the next two pages.

When tackling questions, it is a good idea to make 
a "rst attempt without referring to the explanations in 
this Coursebook or to your notes. !is will help to reveal 
any gaps in your understanding. By working out which 
concepts you "nd most challenging, and by spending more 
time to understand these concepts at an early stage, you 
will progress faster as the course continues.

!e CD-ROM that accompanies this Coursebook 
includes answers with workings for all the questions in 
the book, as well as suggestions for revising and preparing 
for any examinations you take. !ere are also lists of 
recommended further reading, which in many cases will 
take you beyond the requirements of the syllabus, but 
which will help you deepen your knowledge and explain 
more of the background to the physics concepts covered in 
this Coursebook.

In your studies, you will "nd that certain key concepts 
come up again and again, and that these concepts form 
‘themes’ that link the di#erent areas of physics together. It 
will help you to progress and gain con"dence in tackling 
problems if you take note of these themes. For this 
Coursebook, these key concepts include:

 ■ Models of physical systems
 ■ Testing predictions against evidence
 ■ Mathematics as a language and problem-solving tool
 ■ Matter, energy and waves
 ■ Forces and fields

In this Coursebook, the mathematics has been kept to 
the minimum required by the Cambridge International 
Examinations AS and A Level Physics syllabus. If you 
are also studying mathematics, you may "nd that more 
advanced techniques such as calculus will help you with 
many aspects of physics.

Studying physics can be a stimulating and worthwhile 
experience. It is an international subject; no single 
country has a monopoly on the development of the ideas. 
It can be a rewarding exercise to discover how men and 
women from many countries have contributed to our 
knowledge and well-being, through their research into 
and application of the concepts of physics. We hope not 
only that this book will help you to succeed in your future 
studies and career, but also that it will stimulate your 
curiosity and "re your imagination. Today’s students 
become the next generation of physicists and engineers, 
and we hope that you will learn from the past to take 
physics to ever-greater heights.

vii
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Each chapter begins with a short list of the 
facts and concepts that are explained in it.

There is a short context at the beginning of each chapter, containing an example of 
how the material covered in the chapter relates to the ‘real world’.

Questions throughout the text 
give you a chance to check that 
you have understood the topic 
you have just read about. You 
can find the answers to these 
questions on the CD-ROM.

Important equations and other 
facts are shown in highlight boxes.

This book does not contain 
detailed instructions for doing 
particular experiments, but you 
will find background information 
about the practical work you 
need to do in these Boxes. There 
are also two chapters, P1 and 
P2, which provide detailed 
information about the practical 
skills you need to develop during 
your course. 

1

Learning outcomes
You should be able to:

 ■ define displacement, speed and velocity
 ■ draw and interpret displacement–time graphs
 ■ describe laboratory methods for determining speed
 ■ use vector addition to add two or more vectors

Chapter 1:
Kinematics – 
describing motion

2
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Describing movement
Our eyes are good at detecting movement. We notice 
even quite small movements out of the corners of 
our eyes. It’s important for us to be able to judge 
movement – think about crossing the road, cycling or 
driving, or catching a ball.

Figure 1.1 shows a way in which movement can 
be recorded on a photograph. This is a stroboscopic 
photograph of a boy juggling three balls. As he juggles, 
a bright lamp flashes several times a second so that 
the camera records the positions of the balls at equal 
intervals of time.

If we knew the time between flashes, we could 
measure the photograph and calculate the speed of a 
ball as it moves through the air.

If you look at the speedometer in a car, it doesn’t 
tell you the car’s average speed; rather, it tells you its 
speed at the instant when you look at it. !is is the car’s 
instantaneous speed.

Speed
We can calculate the average speed of something moving if 
we know the distance it moves and the time it takes:

average speed = distance
time

In symbols, this is written as: 

v = dt
where v is the average speed and d is the distance travelled 
in time t. !e photograph (Figure 1.2) shows Ethiopia’s 
Kenenisa Bekele posing next to the scoreboard a"er 
breaking the world record in a men’s 10 000  metres race. 
!e time on the clock in the photograph enables us to 
work out his average speed.

If the object is moving at a constant speed, this 
equation will give us its speed during the time taken. If its 
speed is changing, then the equation gives us its average 
speed. Average speed is calculated over a period of time.

Figure 1.1 This boy is juggling three balls. A stroboscopic 
lamp flashes at regular intervals; the camera is moved to one 
side at a steady rate to show separate images of the boy.

Figure 1.2 Ethiopia’s Kenenisa Bekele set a new world record 
for the 10 000 metres race in 2005. 

Units
In the Système Internationale d’Unités (the SI system), 
distance is measured in metres (m) and time in seconds (s). 
!erefore, speed is in metres per second. !is is written as 
m s−1 (or as m/s). Here, s−1 is the same as 1/s, or ‘per second’.

!ere are many other units used for speed. !e choice of 
unit depends on the situation. You would probably give the 
speed of a snail in di$erent units from the speed of a racing 
car. Table 1.1 includes some alternative units of speed.

Note that in many calculations it is necessary to work 
in SI units (m s−1).

m s−1 metres per second

cm s−1 centimetres per second

km s−1 kilometres per second

km h−1 or km/h kilometres per hour

mph miles per hour

Table 1.1 Units of speed.

1 Look at Figure 1.2. The runner ran 10 000 m, and 
the clock shows the total time taken. Calculate his 
average speed during the race.

QUESTION

180
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Figure 13.3 or a similar graph of displacement against 
time illustrates the following important de!nitions about 
waves and wave motion:

 ■ The distance of a point on the wave from its undisturbed 
position or equilibrium position is called the displacement x. 

 ■ The maximum displacement of any point on the wave 
from its undisturbed position is called the amplitude A. 
The amplitude of a wave on the sea is measured in units 
of distance, e.g. metres. The greater the amplitude of the 
wave, the louder the sound or the rougher the sea! 

 ■ The distance from any point on a wave to the next exactly 
similar point (e.g. crest to crest) is called the wavelength λ 
(the Greek letter lambda). The wavelength of a wave on the 
sea is measured in units of distance, e.g. metres.

 ■ The time taken for one complete oscillation of a point in a 
wave is called the period T. It is the time taken for a point to 
move from one particular position and return to that same 
position, moving in the same direction. It is measured in 
units of time, e.g. seconds..

 ■ The number of oscillations per unit time of a point in a 
wave is called its frequency f. For sound waves, the higher 
the frequency of a musical note, the higher is its pitch. 
Frequency is measured in hertz (Hz), where 1 Hz = one 
oscillation per second (1 kHz = 103 Hz and 1 MHz = 106 Hz). 
The frequency f of a wave is the reciprocal of the period T:

f  =  
1
T

Waves are called mechanical waves if they need a 
substance (medium) through which to travel. Sound is one 
example of such a wave. Other cases are waves on strings, 
seismic waves and water waves (Figure 13.4).

Some properties of typical waves are given on page 183 
in Table 13.1.

Figure 13.4 The impact of a droplet on the surface of a liquid 
creates a vibration, which in turn gives rise to waves on the 
surface.

1 Determine the wavelength and amplitude of each 
of the two waves shown in Figure 13.5.

Di
sp

la
ce

m
en

t /
 cm

6
4
2

–2
0

–4
–6

a
b

5 10 15 20 25 30 35

Distance / cm

Figure 13.5 Two waves – for Question 1.

BOX 13.1: Measuring frequency

You can measure the frequency of sound waves 
using a cathode-ray oscilloscope (c.r.o.). Figure 13.6 
shows how.

A microphone is connected to the input of the 
c.r.o. Sound waves are captured by the microphone 
and converted into a varying voltage which has the 
same frequency as the sound waves. This voltage is 
displayed on the c.r.o. screen.

It is best to think of a c.r.o. as a voltmeter which 
is capable of displaying a rapidly varying voltage. To 
do this, its spot moves across the screen at a steady 
speed, set by the time-base control. At the same 
time, the spot moves up and down according to the 
voltage of the input.

Hence the display on the screen is a graph of the 
varying voltage, with time on the (horizontal) x-axis. 
If we know the horizontal scale, we can determine 
the period and hence the frequency of the sound 
wave. Worked example 1 shows how to do this. (In 
Chapter 15 we will look at one method of measuring 
the wavelength of sound waves.)

Figure 13.6 Measuring the frequency of sound waves 
from a tuning fork.

QUESTION
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g.p.e.–k.e. transformations
A motor drags the roller-coaster car to the top of the !rst 
hill. "e car runs down the other side, picking up speed 
as it goes (see Figure 5.12). It is moving just fast enough 
to reach the top of the second hill, slightly lower than the 
!rst. It accelerates downhill again. Everybody screams!

"e motor provides a force to pull the roller-coaster 
car to the top of the hill. It transfers energy to the car. But 
where is this energy when the car is waiting at the top of 
the hill? "e car now has gravitational potential energy; 
as soon as it is given a small push to set it moving, it 
accelerates. It gains kinetic energy and at the same time it 
loses g.p.e.

Kinetic energy
As well as li#ing an object, a force can make it accelerate. 
Again, work is done by the force and energy is transferred 
to the object. In this case, we say that it has gained kinetic 
energy, Ek. "e faster an object is moving, the greater its 
kinetic energy (k.e.).

For an object of mass m travelling at a speed v, we have:
 kinetic energy =   12 × mass × speed2

 Ek =  12  mv2

Deriving the formula for kinetic energy
"e equation for k.e., Ek = 12mv2, is related to one of the 
equations of motion. We imagine a car being accelerated 
from rest (u = 0) to velocity v. To give it acceleration a, it 
is pushed by a force F for a distance s. Since u = 0, we can 
write the equation v2 = u2 + 2as as:

v2 = 2as
Multiplying both sides by 12m gives:

1
2 mv2 = mas

Now, ma is the force F accelerating the car, and mas is the 
force × the distance it moves, that is, the work done by the 
force. So we have:

1
2mv 2 = work done by force F

"is is the energy transferred to the car, and hence its 
kinetic energy.

3 Calculate the increase in kinetic energy of a car of 
mass 800 kg when it accelerates from 20 m s−1 to 
30 m s−1.

 Step 1 Calculate the initial k.e. of the car:
Ek =  1

2 mv2  =  12 × 800 × (20)2 = 160 000 J
 =  160 kJ

 Step 2 Calculate the final k.e. of the car:
Ek =  1

2 mv2  =  12 × 800 × (30)2 = 360 000 J
 =  360 kJ

 Step 3 Calculate the change in the car’s k.e.:
change in k.e. = 360 − 160 = 200 kJ

 Hint: Take care! You can’t calculate the change in k.e. 
by squaring the change in speed. In this example, the 
change in speed is 10 m s−1, and this would give an 
incorrect value for the change in k.e.

7 Calculate how much gravitational potential 
energy is gained if you climb a flight of stairs. 
Assume that you have a mass of 52 kg and that the 
height you li# yourself is 2.5 m.

8 A climber of mass 100 kg (including the equipment 
she is carrying) ascends from sea level to the top 
of a mountain 5500 m high. Calculate the change 
in her gravitational potential energy.

9 a  A toy car works by means of a stretched rubber 
band. What form of potential energy does the 
car store when the band is stretched?

b A bar magnet is lying with its north pole next 
to the south pole of another bar magnet. A 
student pulls them apart. Why do we say that 
the magnets’ potential energy has increased? 
Where has this energy come from?

 10 Which has more k.e., a car of mass 500 kg 
travelling at 15 m s−1 or a motorcycle of mass 
250 kg travelling at 30 m s−1?

 11 Calculate the change in kinetic energy of a ball of 
mass 200 g when it bounces. Assume that it hits 
the ground with a speed of 15.8 m s−1 and leaves 
it at 12.2 m s−1.

QUESTIONS

QUESTIONS

WORKED EXAMPLE

How to use this book

The text and illustrations describe and explain all of the facts and concepts 
that you need to know. The chapters, and o! en the content within them as 
well, are arranged in a similar sequence to your syllabus, but with AS and 
A Level content clearly separated into the two halves of the book.
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How to use this book

Wherever you need to know how to use a formula to carry out a calculation, 
there are worked example boxes to show you how to do this.

Key words are highlighted in the text 
when they are first introduced. 

You will also find definitions of 
these words in the Glossary.

There is a summary of 
key points at the end 
of each chapter. You 
might find this helpful 
when you are revising.

Questions at the end of each chapter begin with shorter answer questions, then move on to  more 
demanding exam-style questions, some of which may require use of knowledge from previous 
chapters. Answers to these questions can be found on the CD–ROM.
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Summary
 ■ Forces are vector quantities that can be added by 

means of a vector triangle. Their resultant can be 
determined using trigonometry or by scale drawing.

 ■ Vectors such as forces can be resolved into 
components. Components at right angles to one 
another can be treated independently of one another. 
For a force F at an angle θ to the x-direction, the 
components are:
x-direction: F cos θ
y-direction: F sin θ

 ■ The moment of a force = force × perpendicular 
distance of the pivot from the line of action of 
the force.

 ■ The principle of moments states that, for any object 
that is in equilibrium, the sum of the clockwise 
moments about any point provided by the 
forces acting on the object equals the sum of the 
anticlockwise moments about that same point.

 ■ A couple is a pair of equal, parallel but opposite forces 
whose e" ect is to produce a turning e" ect on a body 
without giving it linear acceleration.

torque of a couple = one of the forces × perpendicular 
distance between the forces

 ■ For an object to be in equilibrium, the resultant force 
acting on the object must be zero and the resultant 
moment must be zero.

End-of-chapter questions
1 A ship is pulled at a constant speed by two small boats, A and B, as shown in Figure 4.27. The engine of the 

ship does not produce any force.

Figure 4.27 For End-of-chapter Question 1. 

 The tension in each cable between A and B and the ship is 4000 N.
a Draw a free-body diagram showing the three horizontal forces acting on the ship. [2]
b Draw a vector diagram to scale showing these three forces and use your diagram to find the value 

of the drag force on the ship. [2]

40°

B

A

40°
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A group of colliding objects always has as much 
momentum a!er the collision as it had before the collision. 
"is principle is illustrated in Worked example 1.

In the earlier examples, we described how the ‘motion’ 
of one trolley appeared to be transferred to a second 
trolley, or shared with it. It is more correct to say that it 
is the trolley’s momentum that is transferred or shared. 
(Strictly speaking, we should refer to linear momentum, 
because there is another quantity called angular 
momentum which is possessed by spinning objects.)

As with energy, we #nd that momentum is also 
conserved. We have to consider objects which form a 
closed system – that is, no external force acts on them. "e 
principle of conservation of momentum states that:

Within a closed system, the total momentum in any 
direction is constant.

"e principle of conservation of momentum can also be 
expressed as follows:

For a closed system, in any direction:
total momentum of objects before collision 
 = total momentum of objects a!er collision

A

before a!er

B A B

2.0 m s–1 2.0 m s–1 1.0 m s–13.0 m s–1

1 In Figure 6.5, trolley A of mass 0.80 kg travelling at a 
velocity of 3.0 m s−1 collides head-on with a stationary 
trolley B. Trolley B has twice the mass of trolley A. The 
trolleys stick together and have a common velocity of 
1.0 m s−1 a!er the collision. Show that momentum is 
conserved in this collision.

 Step 1 Make a sketch using the information given in the 
question. Notice that we need two diagrams to show 
the situations, one before and one a!er the collision. 
Similarly, we need two calculations – one for the 
momentum of the trolleys before the collision and one 
for their momentum a!er the collision.

 Step 2 Calculate the momentum before the collision:
momentum of trolleys before collision
 = mA × uA + mB × uB

 = (0.80 × 3.0) + 0
 = 2.4 kg m s−1

 Trolley B has no momentum before the collision, 
because it is not moving.

 Step 3 Calculate the momentum a!er the collision:
momentum of trolleys a!er collision
 = (mA + mB) × vA+B

 = (0.80 + 1.60) × 1.0
 = 2.4 kg m s−1

 So, both before and a!er the collision, the trolleys have 
a combined momentum of 2.4 kg m s−1. Momentum has 
been conserved.

uA = 3.0 m s–1 uB = 0 vA+B = 1.0 m s–1

0.80 kg 0.80 kg
0.80kg

positive
direction

before a!er

A B A B
0.80 kg 0.80 kg

0.80kg

Figure 6.5 The state of trolleys A and B, before and a!er 
the collision.

2 Calculate the momentum of each of the following 
objects:
a a 0.50 kg stone travelling at a velocity of 20 m s−1

b a 25 000 kg bus travelling at 20 m s−1 on a road
c an electron travelling at 2.0 × 107 m s−1.
 (The mass of the electron is 9.1 × 10−31 kg.)

3 Two balls, each of mass 0.50 kg, collide as shown in 
Figure 6.6. Show that their total momentum before 
the collision is equal to their total momentum a!er 
the collision.

Figure 6.6 For Question 3.

QUESTIONS

WORKED EXAMPLE
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Chapter 15: Stationary waves

End-of-chapter questions
1 Figure 15.19 shows a stationary wave on a string.

Figure 15.19 For End-of-chapter Question 1.

a On a copy of Figure 15.19, label one node (N) and one antinode (A). [1]
b Mark on your diagram the wavelength of the standing wave and label it λ. [1]
c The frequency of the vibrator is doubled. Describe the changes in the standing wave pattern. [1]

2 A tuning fork which produces a note of 256 Hz is placed above a tube which is nearly filled with water. 
The water level is lowered until resonance is first heard.
a Explain what is meant by the term resonance. [1]
b The length of the column of air above the water when resonance is first heard is 31.2 cm.
 Calculate the speed of the sound wave. [2]

3 a  State two similarities and two di! erences between progressive waves and stationary waves. [4]
b Figure 15.20 shows an experiment to measure the speed of a sound in a string. The frequency of the 

vibrator is adjusted until the standing wave shown in Figure 15.20 is formed.

Figure 15.20 For End-of-chapter Question 3.

i On a copy of the diagram, mark a node (label it N) and an antinode (label it A). [2]
ii The frequency of the vibrator is 120 Hz. Calculate the speed at which a progressive wave would 

travel along the string. [3]
c The experiment is now repeated with the load on the string halved. In order to get a similar standing 

wave the frequency has to be decreased to 30 Hz. Explain, in terms of the speed of the wave in the 
string, why the frequency must be adjusted. [2]

vibrator

vibrator pulley

slotted masses

75 cm
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Other SI units
Using only seven base units means that only this number 
of quantities have to be de!ned with great precision. "ere 
would be confusion and possible contradiction if more 
units were also de!ned. For example, if the density of water 
were de!ned as exactly 1 g cm−3, then 1000 cm3 of a sample 
of water would have a mass of exactly 1 kg. However, it is 
unlikely that the mass of this volume of water would equal 
exactly the mass of the standard kilogram. "e standard 
kilogram, which is kept in France, is the one standard from 
which all masses can ultimately be measured.

All other units can be derived from the base units. "is 
is done using the de!nition of the quantity. For example, 
speed is de!ned as  distance

time  
, and so the base units of 

speed in the SI system are m s−1.
Since the de!ning equation for force is F  = ma, the base 

units for force are kg m s−2.
Equations that relate di$erent quantities must have the 

same base units on each side of the equation. If this does 
not happen the equation must be wrong.

When each term in an equation has the same base units 
the equation is said to be homogeneous.

Base units, derived units
"e metre, kilogram and second are three of the seven SI 
base units. "ese are de!ned with great precision so that 
every standards laboratory can reproduce them correctly.

Other units, such as units of speed (m s−1) and 
acceleration (m s−2) are known as derived units because 
they are combinations of base units. Some derived units, 
such as the newton and the joule, have special names 
which are more convenient to use than giving them in 
terms of base units. "e de!nition of the newton will show 
you how this works.

Defining the newton
Isaac Newton (1642–1727) played a signi!cant part 
in developing the scienti!c idea of force. Building on 
Galileo’s earlier thinking, he explained the relationship 
between force, mass and acceleration, which we now write 
as F = ma. For this reason, the SI unit of force is named 
a%er him.

We can use the equation F = ma to de!ne the newton (N).

One newton is the force that will give a 1 kg mass an 
acceleration of 1 m s−2 in the direction of the force.
1 N = 1 kg × 1 m s−2 or 1 N = 1 kg m s−2

The seven base units
In mechanics (the study of forces and motion), the units 
we use are based on three base units: the metre, kilogram 
and second. As we move into studying electricity, we will 
need to add another base unit, the ampere. Heat requires 
another base unit, the kelvin (the unit of temperature).

Table 3.2 shows the seven base units of the SI system. 
Remember that all other units can be derived from these 
seven. "e equations that relate them are the equations 
that you will learn as you go along (just as F = ma relates 
the newton to the kilogram, metre and second). "e unit 
of luminous intensity is not part of the A/AS course.

Base unit Symbol Base unit
length x, l, s etc. m (metre)

mass m kg (kilogram)

time t s (second)

electric current I A (ampere)

thermodynamic temperature T K (kelvin)

amount of substance n mol (mole)

luminous intensity I cd (candela)

Table 3.2 SI base quantities and units. In this course, you will 
learn about all of these except the candela.

4 The pull of the Earth’s gravity on an apple (its 
weight) is about 1 newton. We could devise a new 
international system of units by defining our unit 
of force as the weight of an apple. State as many 
reasons as you can why this would not be a very 
useful definition.

5 Determine the base units of:

a pressure (  = force
area  )

b energy ( = force × distance )

c density ( = mass
volume )

6 Use base units to prove that the following 
equations are homogeneous.
a pressure  

 = density × acceleration due to gravity × depth
b distance travelled  

 = initial speed × time +   12 acceleration × time2  
 (s = ut + 1

2  at2)

QUESTIONS

QUESTION
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absolute scale of temperature; see thermodynamic scale.
absolute zero !e temperature at which a system has 
minimum internal energy; equivalent to −273.15 °C.
absorption line spectrum A dark line of a unique 
wavelength seen in a continuous spectrum.
acceleration !e rate of change of an object’s velocity:

a = Δv
Δt

Unit: m s−2.

accuracy An accurate value of a measured quantity is one 
which is close to the true value of the quantity.
acoustic impedance Acoustic impedance Z is the product 
of the density ρ of a substance and the speed c of sound in 
that substance (Z = ρc). Unit: kg m−2 s−1.
activity !e rate of decay or disintegration of nuclei in a 
radioactive sample.
ampere !e SI unit of electric current (abbreviated A).
amplitude !e maximum displacement of a particle from 
its equilibrium position.
amplitude modulation A form of modulation in which 
the signal causes variations in the amplitude of a carrier 
wave.
analogue signal A signal that is continuously variable, 
having a continuum of possible values.
analogue-to-digital conversion (ADC) Conversion of a 
continuous analogue signal to discrete digital numbers.
angular displacement !e angle through which an object 
moves in a circle.
angular frequency !e frequency of a sinusoidal 
oscillation expressed in radians per second:

angular frequency ω = 2π
T

angular velocity !e rate of change of the angular 
position of an object as it moves along a curved path.
antinode A point on a stationary wave with maximum 
amplitude.
atomic mass unit A unit of mass (symbol u) 
approximately equal to 1.661 × 10−27 kg. !e mass of an 
atom of 12

6 C = 12.000 u exactly.
attenuation !e gradual loss in strength or intensity of a 
signal.
average speed !e total distance travelled by an object 
divided by the total time taken.

Avogadro constant !e number of particles in one 
mole of any substance approximately (6.02 × 1023 mol−1), 
denoted NA.
band theory !e idea that electrons in a solid or liquid 
can have energies within certain ranges or bands, between 
which are forbidden values.
bandwidth (communications) A measure of the width of 
a range of frequencies being transmitted.
base units De&ned units of the SI system from which all 
other units are derived.
best !t line A straight line drawn as closely as possible to 
the points of a graph so that similar numbers of points lie 
above and below the line.
binding energy !e minimum external energy required 
to separate all the neutrons and protons of a nucleus.
bit A basic unit of information storage, the amount of 
information stored by a device that exists in only two 
distinct states, usually given as the binary digits 0 and 1.
Boltzmann constant A fundamental constant given by 
k = R

NA
, where R is the ideal gas constant and NA is the 

Avogadro constant.
Boyle’s law !e pressure exerted by a &xed mass of gas 
is inversely proportional to its volume, provided the 
temperature of the gas remains constant.
braking radiation X-rays produced when electrons are 
decelerated (also called Bremsstrahlung radiation).
capacitance !e ratio of charge stored by a capacitor to 
the potential di'erence across it.
carrier wave A waveform (usually sinusoidal) which is 
modulated by an input signal to carry information.
centre of gravity !e point where the entire weight of an 
object appears to act.
centripetal force !e resultant force acting on an object 
moving in a circle; it is always directed towards the centre 
of the circle.
characteristic radiation Very intense X-rays produced in 
an X-ray tube, having speci&c wavelengths that depend on 
the target metal.
charge carrier Any charged particle, such as an electron, 
responsible for a current.
Charles’s law !e volume occupied by a gas at constant 
pressure is directly proportional to its thermodynamic 
(absolute) temperature.

Glossary
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Learning outcomes
You should be able to:

 ■ define displacement, speed and velocity
 ■ draw and interpret displacement–time graphs
 ■ describe laboratory methods for determining speed
 ■ use vector addition to add two or more vectors

Chapter 1:
Kinematics – 
describing motion
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Describing movement
Our eyes are good at detecting movement. We notice 
even quite small movements out of the corners of 
our eyes. It’s important for us to be able to judge 
movement – think about crossing the road, cycling or 
driving, or catching a ball.

Figure 1.1 shows a way in which movement can 
be recorded on a photograph. This is a stroboscopic 
photograph of a boy juggling three balls. As he juggles, 
a bright lamp flashes several times a second so that 
the camera records the positions of the balls at equal 
intervals of time.

If we knew the time between flashes, we could 
measure the photograph and calculate the speed of a 
ball as it moves through the air.

If you look at the speedometer in a car, it doesn’t 
tell you the car’s average speed; rather, it tells you its 
speed at the instant when you look at it. !is is the car’s 
instantaneous speed.

Speed
We can calculate the average speed of something moving if 
we know the distance it moves and the time it takes:

average speed = distance
time

In symbols, this is written as: 

v = dt
where v is the average speed and d is the distance travelled 
in time t. !e photograph (Figure 1.2) shows Ethiopia’s 
Kenenisa Bekele posing next to the scoreboard a$er 
breaking the world record in a men’s 10 000  metres race. 
!e time on the clock in the photograph enables us to 
work out his average speed.

If the object is moving at a constant speed, this 
equation will give us its speed during the time taken. If its 
speed is changing, then the equation gives us its average 
speed. Average speed is calculated over a period of time.

Figure 1.1 This boy is juggling three balls. A stroboscopic 
lamp flashes at regular intervals; the camera is moved to one 
side at a steady rate to show separate images of the boy.

Figure 1.2 Ethiopia’s Kenenisa Bekele set a new world record 
for the 10 000 metres race in 2005. 

Units
In the Système Internationale d’Unités (the SI system), 
distance is measured in metres (m) and time in seconds (s). 
!erefore, speed is in metres per second. !is is written as 
m s−1 (or as m/s). Here, s−1 is the same as 1/s, or ‘per second’.

!ere are many other units used for speed. !e choice of 
unit depends on the situation. You would probably give the 
speed of a snail in di#erent units from the speed of a racing 
car. Table 1.1 includes some alternative units of speed.

Note that in many calculations it is necessary to work 
in SI units (m s−1).

m s−1 metres per second

cm s−1 centimetres per second

km s−1 kilometres per second

km h−1 or km/h kilometres per hour

mph miles per hour

Table 1.1 Units of speed.

1 Look at Figure 1.2. The runner ran 10 000 m, and 
the clock shows the total time taken. Calculate his 
average speed during the race.

QUESTION
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2 Here are some units of speed:
 m s−1 mm s−1 km s−1 km h−1

  Which of these units would be appropriate when 
stating the speed of each of the following?
a a tortoise
b a car on a long journey
c light
d a sprinter.

3 A snail crawls 12 cm in one minute. What is its 
average speed in mm s−1?

Determining speed
You can "nd the speed of something moving by measuring 
the time it takes to travel between two "xed points. For 
example, some motorways have emergency telephones 
every 2000 m. Using a stopwatch you can time a car over 
this distance. Note that this can only tell you the car’s 
average speed between the two points. You cannot tell 
whether it was increasing its speed, slowing down, or 
moving at a constant speed.

BOX 1.1: Laboratory measurements of speed

Here we describe four di"erent ways to measure the 
speed of a trolley in the laboratory as it travels along a 
straight line. Each can be adapted to measure the speed 
of other moving objects, such as a glider on an air track, 
or a falling mass.

Measuring speed using two light gates
The leading edge of the card in Figure 1.3 breaks the light 
beam as it passes the first light gate. This starts the timer. 
The timer stops when the front of the card breaks the 
second beam. The trolley’s speed is calculated from the 
time interval and the distance between the light gates.

 Measuring speed using a ticker-timer
The ticker-timer (Figure 1.5) marks dots on the tape at 
regular intervals, usually s (i.e. 0.02 s). (This is because 
it works with alternating current, and in most countries 
the frequency of the alternating mains is 50 Hz.) 
The pattern of dots acts as a record of the trolley’s 
movement.

Measuring speed using one light gate
The timer in Figure 1.4 starts when the leading edge 
of the card breaks the light beam. It stops when the 
trailing edge passes through. In this case, the time 
shown is the time taken for the trolley to travel a 
distance equal to the length of the card. The computer 
so#ware can calculate the speed directly by dividing 
the distance by the time taken.

Figure 1.3 Using two light gates to find the average speed 
of a trolley. 

stop

timer

light
gates

start

Figure 1.4 Using a single light gate to find the average 
speed of a trolley.

stop
start

light
gatetimer

Figure 1.5 Using a ticker-timer to investigate the motion 
of a trolley.

ticker-timer

power supply

0 1 2 3 4 5

starttrolley

QUESTIONS
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Distance and displacement, 
scalar and vector
In physics, we are o$ en concerned with the distance 
moved by an object in a particular direction. ! is is called 
its displacement. Figure 1.8 illustrates the di# erence 
between distance and displacement. It shows the route 
followed by walkers as they went from town A to town C. 
! eir winding route took them through town B, so that 
they covered a total distance of 15 km. However, their 
displacement was much less than this. ! eir " nishing 
position was just 10 km from where they started. To give a 
complete statement of their displacement, we need to give 
both distance and direction:

displacement = 10 km 30° E of N
Displacement is an example of a vector quantity. A 
vector quantity has both magnitude (size) and direction. 
Distance, on the other hand, is a scalar quantity. Scalar 
quantities have magnitude only.

4 A trolley with a 5.0 cm long card passed through 
a single light gate. The time recorded by a digital 
timer was 0.40 s. What was the average speed of 
the trolley in m s−1?

5 Figure 1.7 shows two ticker-tapes. Describe the 
motion of the trolleys which produced them.

6 Four methods for determining the speed of a 
moving trolley have been described. Each could 
be adapted to investigate the motion of a falling 
mass. Choose two methods which you think 
would be suitable, and write a paragraph for each 
to say how you would adapt it for this purpose.

start

a

b

Figure 1.7 Two ticker-tapes; for Question 5. 

BOX 1.1: Laboratory measurements of speed (continued)

Start by inspecting the tape. This will give you a 
description of the trolley’s movement. Identify the start 
of the tape. Then look at the spacing of the dots:

 ■ even spacing – constant speed
 ■ increasing spacing – increasing speed.

Now you can make some measurements. Measure the 
distance of every fi# h dot from the start of the tape. 
This will give you the trolley’s distance at intervals 
of 0.1 s. Put the measurements in a table and draw a 
distance–time graph.

Measuring speed using a motion sensor
The motion sensor (Figure 1.6) transmits regular pulses 
of ultrasound at the trolley. It detects the reflected 
waves and determines the time they took for the trip 
to the trolley and back. From this, the computer can 
deduce the distance to the trolley from the motion 
sensor. It can generate a distance–time graph. You can 
determine the speed of the trolley from this graph.

Choosing the best method
Each of these methods for finding the speed of a trolley 
has its merits. In choosing a method, you might think 
about the following points:

 ■ Does the method give an average value of speed 
or can it be used to give the speed of the trolley at 
di" erent points along its journey?

 ■ How precisely does the method measure time – to the 
nearest millisecond?

 ■ How simple and convenient is the method to set up in 
the laboratory?

motion
sensor

trolley

computer

Figure 1.6 Using a motion sensor to investigate the motion 
of a trolley.

QUESTIONS
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7 Which of these gives speed, velocity, distance or 
displacement? (Look back at the definitions of 
these quantities.)
a The ship sailed south-west for 200 miles.
b I averaged 7 mph during the marathon.
c The snail crawled at 2 mm s−1 along the straight 

edge of a bench.
d The sales representative’s round trip was 

420 km.

CB

A

7 km

8 km
10 km N

S

W E

Figure 1.8 If you go on a long walk, the distance you travel 
will be greater than your displacement. In this example, the 
walkers travel a distance of 15 km, but their displacement is 
only 10 km, because this is the distance from the start to the 
finish of their walk. 

Speed and velocity calculations
We can write the equation for velocity in symbols:

v = st

v = Δs
Δt

!e word equation for velocity is:

velocity = change in displacement
time taken

Note that we are using Δs to mean ‘change in displace-
ment s’. !e symbol Δ, Greek letter delta, means ‘change 
in’. It does not represent a quantity (in the way that s does); 
it is simply a convenient way of representing a change in a 
quantity. Another way to write Δs would be s2 − s1, but this 
is more time-consuming and less clear.

!e equation for velocity, v = Δs
Δt 

, can be rearranged 
as follows, depending on which quantity we want to 
determine:

change in displacement Δs = v × Δt

change in time Δt = Δs
v

Note that each of these equations is balanced in 
terms of units. For example, consider the equation 
for displacement. !e units on the right-hand side are 
m s−1 × s, which simpli"es to m, the correct unit for 
displacement.

Note also that we can, of course, use the same 
equations to "nd speed and distance, that is:

v = dt

distance d = v × t

time t = dv

Speed and velocity
It is o$en important to know both the speed of an 
object and the direction in which it is moving. Speed 
and direction are combined in another quantity, called 
velocity. !e velocity of an object can be thought of as 
its speed in a particular direction. So, like displacement, 
velocity is a vector quantity. Speed is the corresponding 
scalar quantity, because it does not have a direction. So, 
to give the velocity of something, we have to state the 
direction in which it is moving. For example, an aircra$ 
(ies with a velocity of 300 m s−1 due north. Since velocity is 
a vector quantity, it is de"ned in terms of displacement:

velocity =  change in displacement
time taken

Alternatively, we can say that velocity is the rate of change 
of an object’s displacement. From now on, you need to be 
clear about the distinction between velocity and speed, 
and between displacement and distance. Table 1.2 shows 
the standard symbols and units for these quantities.

Quantity Symbol for 
quantity Symbol for unit

distance d m

displacement s, x m

time t s

speed, velocity v m s−1

Table 1.2 Standard symbols and units. (Take care not to 
confuse italic s for displacement with s for seconds. Notice 
also that v is used for both speed and velocity.)

QUESTION
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Making the most of units
In Worked example 1 and Worked example 2, units have 
been omitted in intermediate steps in the calculations. 
However, at times it can be helpful to include units as this 
can be a way of checking that you have used the correct 
equation; for example, that you have not divided one 
quantity by another when you should have multiplied 
them. !e units of an equation must be balanced, just as the 
numerical values on each side of the equation must be equal.

If you take care with units, you should be able to carry 
out calculations in non-SI units, such as kilometres per 
hour, without having to convert to metres and seconds.

For example, how far does a spacecra$ travelling at 
40 000 km h−1 travel in one day? Since there are 24 hours in 
one day, we have:

distance travelled = 40 000 km h−1 × 24 h

 = 960 000 km

1 A car is travelling at 15 m s−1. How far will it travel in  
1 hour?

 Step 1 It is helpful to start by writing down what you 
know and what you want to know:
v  = 15 m s−1

t  = 1 h = 3600 s
d  = ?

 Step 2 Choose the appropriate version of the 
equation and substitute in the values. Remember  
to include the units:
 d  = v × t
 = 15 × 3600
 = 5.4 × 104 m
 = 54 km
The car will travel 54 km in 1 hour.

2 The Earth orbits the Sun at a distance of 
150 000 000 km. How long does it take light from  
the Sun to reach the Earth?  
(Speed of light in space = 3.0 × 108 m s−1.)

 Step 1 Start by writing what you know. Take care 
with units; it is best to work in m and s. You need to 
be able to express numbers in scientific notation 
(using powers of 10) and to work with these on your 
calculator.
 v  = 3.0 × 108 m s−1

 d  = 150 000 000 km
 = 150 000 000 000 m
 = 1.5 × 1011 m

 Step 2 Substitute the values in the equation for 
time:

t  =  
d
v  =  

1.5 × 1011 

3.0 × 108   = 500 s

 Light takes 500 s (about 8.3 minutes) to travel from 
the Sun to the Earth.

 Hint: When using a calculator, to calculate the time t, 
you press the buttons in the following sequence:

 [1.5] [EXP] [11] [÷] [3] [EXP] [8]

 or

 [1.5] [×10n] [11] [÷] [3] [×10n] [8]

8 A submarine uses sonar to measure the depth of 
water below it. Reflected sound waves are detected 
0.40 s a#er they are transmitted. How deep is the 
water? (Speed of sound in water = 1500 m s−1.)

9 The Earth takes one year to orbit the Sun at a 
distance of 1.5 × 1011 m. Calculate its speed. Explain 
why this is its average speed and not its velocity.

Displacement–time graphs
We can represent the changing position of a moving object 
by drawing a displacement–time graph. !e gradient 
(slope) of the graph is equal to its velocity (Figure 1.9). 
!e steeper the slope, the greater the velocity. A graph 
like this can also tell us if an object is moving forwards or 
backwards. If the gradient is negative, the object’s velocity 
is negative – it is moving backwards.

Deducing velocity from a displacement–
time graph
A toy car moves along a straight track. Its displacement at 
di#erent times is shown in Table 1.3. !is data can be used 
to draw a displacement–time graph from which we can 
deduce the car’s velocity.

Displacement / m 1.0 3.0 5.0 7.0 7.0 7.0

Time / s 0.0 1.0 2.0 3.0 4.0 5.0

Table 1.3 Displacement (s) and time (t) data for a toy car. 

WORKED EXAMPLES

QUESTIONS
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It is useful to look at the data "rst, to see the pattern 
of the car’s movement. In this case, the displacement 
increases steadily at "rst, but a$er 3.0 s it becomes 
constant. In other words, initially the car is moving at a 
steady velocity, but then it stops.

Now we can plot the displacement–time graph  
(Figure 1.11).

We want to work out the velocity of the car over the 
"rst 3.0 seconds. We can do this by working out the 
gradient of the graph, because:

velocity = gradient of displacement−time graph
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Figure 1.9 The slope of a displacement–time (s–t) graph tells 
us how fast an object is moving.
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Figure 1.11 Displacement–time graph for a toy car; data as 
shown in Table 1.3.

We draw a right-angled triangle as shown. To "nd the 
car’s velocity, we divide the change in displacement by the 
change in time. !ese are given by the two sides of the 
triangle labelled Δs and Δt.

 velocity v = change in displacement
time taken

 v = Δs
Δt

 v = (7.0 − 1.0)
(3.0 − 0)  = 6.0

3.0 = 2.0 ms−1

If you are used to "nding the gradient of a graph, you may 
be able to reduce the number of steps in this calculation.
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Combining displacements
!e walkers shown in Figure 1.12 are crossing di)cult 
ground. !ey navigate from one prominent point to the 
next, travelling in a series of straight lines. From the map, 
they can work out the distance that they travel and their 
displacement from their starting point:

distance travelled = 25 km
(Lay thread along route on map; measure thread against 
map scale.)

displacement = 15 km north-east
(Join starting and "nishing points with straight line; 
measure line against scale.)

A map is a scale drawing. You can "nd your displacement 
by measuring the map. But how can you calculate your 
displacement? You need to use ideas from geometry and 
trigonometry. Worked examples 3 and 4 show how.

Displacement / m 0 85 170 255 340

Time / s 0 1.0 2.0 3.0 4.0

Table 1.4 Displacement (s) and time (t) data for 
Question 12.

 13 An old car travels due south. The distance it 
travels at hourly intervals is shown in Table 1.5.
a Draw a distance–time graph to represent the 

car’s journey.
b From the graph, deduce the car’s speed in 

km h−1 during the first three hours of the 
journey.

c What is the car’s average speed in km h−1 
during the whole journey?

Time / h Distance / km
0 0

1 23

2 46

3 69

4 84

Table 1.5 Data for Question 13.

START

FINISH

1 2 3 4 5 km

river
ridge bridge

valley

cairn

Figure 1.12 In rough terrain, walkers head straight for a 
prominent landmark. 

 10 The displacement–time sketch graph in Figure 
1.10 represents the journey of a bus. What does 
the graph tell you about the journey?

 11 Sketch a displacement–time graph to show your 
motion for the following event. You are walking at 
a constant speed across a field a#er jumping o" a 
gate. Suddenly you see a bull and stop. Your friend 
says there’s no danger, so you walk on at a reduced 
constant speed. The bull bellows, and you run back 
to the gate. Explain how each section of the walk 
relates to a section of your graph.

 12 Table 1.4 shows the displacement of a racing car at 
di"erent times as it travels along a straight track 
during a speed trial.
a Determine the car’s velocity.
b Draw a displacement–time graph and use it to 

find the car’s velocity.

s

t
0

0
Figure 1.10 For Question 10.

QUESTIONS
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3 A spider runs along two sides of a table (Figure 1.13). 
Calculate its final displacement.

 Here, the two displacements are not at 90° to one 
another, so we can’t use Pythagoras’s theorem. We 
can solve this problem by making a scale drawing, and 
measuring the final displacement. (However, you could 
solve the same problem using trigonometry.)

 Step 1 Choose a suitable scale. Your diagram should 
be reasonably large; in this case, a scale of 1 cm to 
represent 5 km is reasonable.

 Step 2 Draw a line to represent the first vector. North is 
at the top of the page. The line is 6 cm long, towards the 
east (right).

 Step 3 Draw a line to represent the second vector, 
starting at the end of the first vector. The line is 10 cm 
long, and at an angle of 45° (Figure 1.15).

 Step 4 To find the final displacement, join the start to 
the finish. You have created a vector triangle. Measure 
this displacement vector, and use the scale to convert 
back to kilometres:
length of vector = 14.8 cm
final displacement = 14.8 × 5 = 74 km

 Step 5 Measure the angle of the final displacement 
vector:
angle = 28° N of E

 Therefore the aircra#’s final displacement is 74 km at  
28° north of east.

 Step 1 Because the two sections of the spider’s run 
(OA and AB) are at right angles, we can add the two 
displacements using Pythagoras’s theorem:
 OB2 = OA2 + AB2

 = 0.82 + 1.22 =  2.08

 OB =     2.08   = 1.44 m ≈ 1.4 m

 Step 2 Displacement is a vector. We have found the 
magnitude of this vector, but now we have to find its 
direction. The angle θ is given by:

 tan θ  =  
opp 
adj   =  

0.8
1.2

 =  0.667
 θ  =  tan−1 (0.667)
 =  33.7° ≈ 34°

 So the spider’s displacement is 1.4 m at an angle of 34° 
north of east.

4 An aircra# flies 30 km due east and then 50 km north-
east (Figure 1.14). Calculate the final displacement of 
the aircra#.

north

east

A B

O

1.2 m

0.8 m

θ

θ

Figure 1.13 The spider runs a distance of 2.0 m, but 
what is its displacement?

Figure 1.15 Scale drawing for Worked example 4. 
Using graph paper can help you to show the vectors 
in the correct directions. 

Figure 1.14 What is the aircra#’s final displacement?

N

E

45°

final displacement

30 km
45°

50 km
1 cm

1 cm

WORKED EXAMPLES
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!is process of adding two displacements together 
(or two or more of any type of vector) is known as vector 
addition. When two or more vectors are added together, 
their combined e#ect is known as the resultant of the 
vectors.

Combining velocities
Velocity is a vector quantity and so two velocities can be 
combined by vector addition in the same way that we have 
seen for two or more displacements.

Imagine that you are attempting to swim across a river. 
You want to swim directly across to the opposite bank, but 
the current moves you sideways at the same time as you 
are swimming forwards. !e outcome is that you will end 
up on the opposite bank, but downstream of your intended 
landing point. In e#ect, you have two velocities:

 ■ the velocity due to your swimming, which is directed 
straight across the river

 ■ the velocity due to the current, which is directed 
downstream, at right angles to your swimming velocity.

!ese combine to give a resultant (or net) velocity, which 
will be diagonally downstream. In order to swim directly 
across the river, you would have to aim upstream. !en 
your resultant velocity could be directly across the river.

 14 You walk 3.0 km due north, and then 4.0 km due 
east.
a Calculate the total distance in km you have 

travelled.
b Make a scale drawing of your walk, and use it 

to find your final displacement. Remember to 
give both the magnitude and the direction.

c Check your answer to part b by calculating 
your displacement.

 15 A student walks 8.0 km south-east and then 
12 km due west.
a Draw a vector diagram showing the route. Use 

your diagram to find the total displacement. 
Remember to give the scale on your diagram 
and to give the direction as well as the 
magnitude of your answer.

b Calculate the resultant displacement. Show 
your working clearly.

WORKED EXAMPLE

5 An aircra# is flying due north with a velocity of 200 m s−1. 
A side wind of velocity 50 m s−1 is blowing due east. What 
is the aircra#’s resultant velocity (give the magnitude 
and direction)?

 Here, the two velocities are at 90°. A sketch diagram and 
Pythagoras’s theorem are enough to solve the problem.

 Step 1 Draw a sketch of the situation – this is shown in 
Figure 1.16a.

 Step 2 Now sketch a vector triangle. Remember that 
the second vector starts where the first one ends. This is 
shown in Figure 1.16b.

 Step 3 Join the start and end points to complete the 
triangle.

 Step 4 Calculate the magnitude of the resultant vector v 
(the hypotenuse of the right-angled triangle).
 v  2 = 2002 + 502 = 40 000 + 2500 =  42 500

 v =     42 500 ≈ 206 m s−1

 Step 5 Calculate the angle θ  :

 tan θ  =  
50

200

 =  0.25
 θ  =  tan−1 (0.25) ≈ 14°

 So the aircra#’s resultant velocity is 206 m s−1 at 14° east 
of north.

Figure 1.16 Finding the resultant of two velocities – 
for Worked example 5.

v
200 m s–1 200 m s–1

50 m s–1

50 m s–1a b

Not to
scale

θ

QUESTIONS
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 16 A swimmer can swim at 2.0 m s−1 in still water. 
She aims to swim directly across a river which 
is flowing at 0.80 m s−1. Calculate her resultant 
velocity. (You must give both the magnitude and 
the direction.)

 17 A stone is thrown from a cli" and strikes the 
surface of the sea with a vertical velocity of 
18 m s−1 and a horizontal velocity v. The resultant 
of these two velocities is 25 m s−1.
a Draw a vector diagram showing the two 

velocities and the resultant.
b Use your diagram to find the value of v.
c Use your diagram to find the angle between 

the stone and the vertical as it strikes the 
water.

Summary
 ■ Displacement is the distance travelled in a particular 

direction.

 ■ Velocity is defined by the word equation

velocity  =  change in displacement
time taken

The gradient of a displacement–time graph is equal  
to velocity:

velocity  =  Δs
Δt

 ■ Distance and speed are scalar quantities. A scalar 
quantity has only magnitude.

 ■ Displacement and velocity are vector quantities.  
A vector quantity has both magnitude and direction.

 ■ Vector quantities may be combined by vector addition 
to find their resultant.

QUESTIONS
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End-of-chapter questions
1 A car travels one complete lap around a circular track at a constant speed of  120 km h−1.

a If one lap takes 2.0 minutes, show that the length of the track is  4.0 km. [2]
b Explain why values for the average speed and average velocity are di" erent.  [1]
c Determine the magnitude of the displacement of the car in a time of 1.0 minute.  [2]
 (The circumference of a circle = 2πR, where R is the radius of the circle.)

2 A boat leaves point A and travels in a straight line to point B (Figure 1.17). 
The journey takes 60 s.

 Calculate:
a the distance travelled by the boat [2]
b the total displacement of the boat  [2]
c the average velocity of the boat. [2]

 Remember that each vector quantity must be given a direction as well 
as a magnitude.

3 A boat travels at 2.0 m s−1 east towards a port, 2.2 km away. When the boat reaches the port, the passengers 
travel in a car due north for 15 minutes at 60 km h−1.

 Calculate:
a the total distance travelled  [2]
b the total displacement  [2]
c the total time taken [2]
d the average speed in m s−1 [2]
e the magnitude of the average velocity. [2]

4 A river flows from west to east with a constant velocity of 1.0 m s−1. A boat leaves the south bank heading 
due north at 2.40 m s−1. Find the resultant velocity of the boat. [2]

5 a Define displacement. [1]
b Use the definition of displacement to explain how it is possible for an athlete to run round a track yet 

have no displacement. [2]

6 A girl is riding a bicycle at a constant velocity of 3.0 m s−1 along a straight road. At time t  = 0, she passes 
a boy sitting on a stationary bicycle. At time t  = 0, the boy sets o"  to catch up with the girl. His velocity 
increases from time t  = 0 until t  = 5.0 s, when he has covered a distance of 10 m. He then continues at a 
constant velocity of 4.0 m s−1.
a Draw the displacement–time graph for the girl from t  = 0 to 12 s. [1]
b On the same graph axes, draw the displacement–time graph for the boy. [2]
c Using your graph, determine the value of t when the boy catches up with the girl. [1]

12

B

600 m

800 m

A

Figure 1.17 For End-of-chapter 
Question 2. 
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7 A student drops a small black sphere alongside a vertical scale marked in centimetres. 
A number of flash photographs of the sphere are taken at 0.1 s intervals, as shown in 
Figure 1.18. The first photograph is taken with the sphere at the top at time t  = 0 s.
a Explain how Figure 1.18 shows that the sphere reaches a constant speed. [2]
b Determine the constant speed reached by the sphere. [2]
c Determine the distance that the sphere has fallen when t  = 0.8 s. [2]

8 a  State one di" erence between a scalar quantity and a vector quantity and give an example of each. [3]
b A plane has an air speed of 500 km h−1 due north. A wind blows at 100 km h−1 from east to west. Draw 

a vector diagram to calculate the resultant velocity of the plane. Give the direction of travel of the 
plane with respect to north. [4]

c The plane flies for 15 minutes. Calculate the displacement of the plane in this time. [1]

9 A small aircra#  for one person is used on a short horizontal flight. On its journey from A to B, the resultant 
velocity of the aircra#  is 15 m s−1 in a direction 60° east of north and the wind velocity is 7.5 m s−1 due 
north (Figure 1.19).

Figure 1.19 For End-of-chapter Question 9. 

a Show that for the aircra#  to travel from A to B it should be pointed due east. [2]
b A# er flying 5 km from A to B, the aircra#  returns along the same path from B to A with a resultant 

velocity of 13.5 m s−1. Assuming that the time spent at B is negligible, calculate the average speed 
for the complete journey from A to B and back to A. [3]

20
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Figure 1.18 For End-of-
chapter Question 7.
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Accelerated 
motion

Learning outcomes
You should be able to:

 ■ define acceleration
 ■ draw and interpret velocity–time graphs
 ■ derive and use the equations of uniformly accelerated 

motion
 ■ describe a method for determining the acceleration due 

to gravity, g
 ■ explain projectile motion in terms of horizontal and 

vertical components of motion

14
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Quick o! the mark
The cheetah (Figure 2.1) has a maximum speed of over 
30 m s−1 (108 km/h). From a standing start a cheetah 
can reach 20 m s−1 in just three or four strides, taking 
only two seconds.

A car cannot increase its speed as rapidly but on 
a long straight road it can easily travel faster than a 
cheetah.

Figure 2.1 The cheetah is the world’s fastest land animal.  
Its acceleration is impressive, too. 

The meaning of acceleration
In everyday language, the term accelerating means 
‘speeding up’. Anything whose speed is increasing is 
accelerating. Anything whose speed is decreasing is 
decelerating.

To be more precise in our de"nition of acceleration, we 
should think of it as changing velocity. Any object whose 
speed is changing or which is changing its direction has 
acceleration. Because acceleration is linked to velocity in 
this way, it follows that it is a vector quantity.

Some examples of objects accelerating are shown in 
Figure 2.2.

Calculating acceleration
!e acceleration of something indicates the rate at which 
its velocity is changing. Language can get awkward here. 
Looking at the sprinter in Figure 2.3, we might say, ‘!e 
sprinter accelerates faster than the car.’ However, ‘faster’ 
really means ‘greater speed’. It is better to say, ‘!e sprinter 
has a greater acceleration than the car.’

Acceleration is de"ned as follows:

 acceleration = rate of change of velocity

 average acceleration =  
change in velocity

time taken

So to calculate acceleration a, we need to know two 
quantities – the change in velocity Δv and the time taken Δt :

a = Δv
Δt

Sometimes this equation is written di#erently. We write u 
for the initial velocity and v for the !nal velocity (because 
u comes before v in the alphabet). !e moving object 

A car speeding up as 
it leaves the town. The
driver presses on the
accelerator pedal to
increase the car’s velocity.

A car setting o! from
the tra!ic lights. There is 
an instant when the car
is both stationary and
accelerating. Otherwise it
would not start moving.

A car travelling round a
bend at a steady speed. 
The car’s speed is 
constant, but its velocity 
is changing as it changes
direction.

A ball being hit by a
tennis racket. Both the 
ball’s speed and direction 
are changing. The ball’s 
velocity changes.

A stone dropped over
a cli!. Gravity makes the
stone go faster and faster.
The stone accelerates
as it falls.

Figure 2.2 Examples of objects accelerating. 
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Units of acceleration
!e unit of acceleration is m s−2 (metres per second squared). 
!e sprinter might have an acceleration of 5 m s−2; her 
velocity increases by 5 m s−1 every second. You could express 
acceleration in other units. For example, an advertisement 
might claim that a car accelerates from 0 to 60 miles per 
hour (mph) in 10 s. Its acceleration would then be 6 mph s−1 
(6 miles per hour per second). However, mixing together 
hours and seconds is not a good idea, and so acceleration is 
almost always given in the standard SI unit of m s−2.

accelerates from u to v in a time t (this is the same as the 
time represented by Δt above). !en the acceleration is 
given by the equation:

a = v − u
t

You must learn the de"nition of acceleration. It can be put 
in words or symbols. If you use symbols you must state 
what those symbols mean.

START time = 1 s

time = 2 s time = 3 s

Figure 2.3 The sprinter has a greater acceleration than the 
car, but her top speed is less. 

1 Leaving a bus stop, a bus reaches a velocity of 8.0 m s−1 
a#er 10 s. Calculate the acceleration of the bus.

 Step 1 Note that the bus’s initial velocity is 0 m s−1. 
Therefore:
change in velocity ∆v  = (8.0 − 0) m s−1

time taken ∆t  = 10 s

 Step 2 Substitute these values in the equation for 
acceleration:
 acceleration =  

Δv
Δt  =  

8.0
10

 =  0.80 m s−2

2 A sprinter starting from rest has an acceleration of 
5.0 m s−2 during the first 2.0 s of a race. Calculate her 
velocity a#er 2.0 s.

 Step 1 Rearranging the equation a  =  
v − u

t  gives:
v  =  u + at

 Step 2 Substituting the values and calculating gives:
v  =  0 + (5.0 × 2.0) = 10 m s−1

3 A train slows down from 60 m s−1 to 20 m s−1 in 50 s. 
Calculate the magnitude of the deceleration of the train.

 Step 1 Write what you know:
u  =  60 m s−1 v  =  20 m s−1 t  =  50 s

 Step 2 Take care! Here the train’s final velocity is less 
than its initial velocity. To ensure that we arrive at the 
correct answer, we will use the alternative form of the 
equation to calculate a.

 a =  
v − u

t

 =  
20 − 60

50   =  
−40
50   =  −0.80 m s−2

 The minus sign (negative acceleration) indicates that the 
train is slowing down. It is decelerating. The magnitude 
of the deceleration is 0.80 m s−2.

1 A car accelerates from a standing start and 
reaches a velocity of 18 m s−1 a#er 6.0 s. Calculate 
its acceleration.

2 A car driver brakes gently. Her car slows down 
from 23 m s−1 to 11 m s−1 in 20 s. Calculate the 
magnitude (size) of her deceleration. (Note that, 
because she is slowing down, her acceleration is 
negative.)

3 A stone is dropped from the top of a cli". Its 
acceleration is 9.81 m s−2. How fast is it moving:
a a#er 1 s?
b a#er 3 s?

QUESTIONS

WORKED EXAMPLES
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Deducing acceleration
!e gradient of a velocity–time graph tells us whether the 
object’s velocity has been changing at a high rate or a low 
rate, or not at all (Figure 2.4). We can deduce the value of 
the acceleration from the gradient of the graph:

acceleration = gradient of velocity–time graph
!e graph (Figure 2.5) shows how the velocity of a cyclist 
changed during the start of a sprint race. We can "nd his 
acceleration during the "rst section of the graph (where 
the line is straight) using the triangle as shown.

v

t0
0

v

t

low a

high a

0
0

v

t0
0

v

t
0

0

v

t0
0

A straight line with a
positive slope shows 
constant acceleration.

The greater the slope, the
greater the acceleration. 

The velocity is constant.
Therefore acceleration a = 0.

A negative slope shows 
deceleration (a is negative).

The slope is changing; 
the acceleration is changing.

Figure 2.4 The gradient of a velocity–time graph is equal to 
acceleration. 

v / m s–1

t / s

30

20

10

5 10

Δv

Δt
0

0
Figure 2.5 Deducing acceleration from a velocity–time graph.

!e change in velocity Δv is given by the vertical side of 
the triangle. !e time taken Δt is given by the horizontal 
side.

 acceleration = change in displacement
time taken

 = 20 − 0
5

 = 4.0 m s−2

A more complex example where the velocity–time graph is 
curved is shown on page 24.

Deducing displacement
We can also "nd the displacement of a moving object from 
its velocity–time graph. !is is given by the area under the 
graph:

displacement = area under velocity–time graph
It is easy to see why this is the case for an object moving 
at a constant velocity. !e displacement is simply 
velocity × time, which is the area of the shaded rectangle 
(Figure 2.6a).

For changing velocity, again the area under the graph 
gives displacement (Figure 2.6b). !e area of each square 
of the graph represents a distance travelled: in this case, 
1 m s−1 × 1 s, or 1 m. So, for this simple case in which the 
area is a triangle, we have:

 displacement = 12  × base × height

 = 12  × 5.0 × 10 = 25 m

It is easy to confuse displacement–time graphs and 
velocity–time graphs. Check by looking at the quantity 
marked on the vertical axis.

For more complex graphs, you may have to use other 
techniques such as counting squares to deduce the area, 
but this is still equal to the displacement.



18

Cambridge International AS Level Physics

(Take care when counting squares: it is easiest when the 
sides of the squares stand for one unit. Check the axes, as 
the sides may represent 2 units, or 5 units, or some other 
number.)

Measuring velocity and 
acceleration
In a car crash, the occupants of the car may undergo a very 
rapid deceleration. !is can cause them serious injury, but 
can be avoided if an air-bag is in(ated within a fraction 
of a second. Figure 2.7 shows the tiny accelerometer at the 
heart of the system, which detects large accelerations and 
decelerations.

!e acceleration sensor consists of two rows of 
interlocking teeth. In the event of a crash, these move 
relative to one another, and this generates a voltage which 
triggers the release of the air-bag.

20

10

0
5 100 15

10

5

0
5

area under graph
= displacement

0

v / m s–1

v / m s–1

a

b

t / s

t / s

area = 20 × 15 = 300 m

Figure 2.6 The area under the velocity–time graph is equal to 
the displacement of the object.

4 A lorry driver is travelling at the speed limit on 
a motorway. Ahead, he sees hazard lights and 
gradually slows down. He sees that an accident 
has occurred, and brakes suddenly to a halt. 
Sketch a velocity–time graph to represent the 
motion of this lorry.

5 Table 2.1 shows how the velocity of a motorcyclist 
changed during a speed trial along a straight road.
a Draw a velocity–time graph for this motion.
b From the table, deduce the motorcyclist’s 

acceleration during the first 10 s.
c Check your answer by finding the gradient of 

the graph during the first 10 s.
d Determine the motorcyclist’s acceleration 

during the last 15 s.
e Use the graph to find the total distance 

travelled during the speed trial.

Velocity / m s−1 0 15 30 30 20 10 0

Time / s 0 5 10 15 20 25 30

Table 2.1 Data for a motorcyclist.

At the top of the photograph, you can see a second 
sensor which detects sideways accelerations. !is is 
important in the case of a side impact.

!ese sensors can also be used to detect when a car 
swerves or skids, perhaps on an icy road. In this case, they 
activate the car’s stability-control systems.

Determining velocity and 
acceleration in the laboratory
In Chapter 1, we looked at ways of "nding the velocity of a 
trolley moving in a straight line. !ese involved measuring 
distance and time, and deducing velocity. Box 2.1 below 
shows how these techniques can be extended to "nd the 
acceleration of a trolley.

Figure 2.7 A micro-mechanical acceleration sensor is used to 
detect sudden accelerations and decelerations as a vehicle 
travels along the road. This electron microscope image shows 
the device magnified about 1000 times.

QUESTIONS
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BOX 2.1: Laboratory measurements of acceleration

Measurements using light gates
The computer records the time for the first ‘interrupt’ 
section of the card to pass through the light beam of the 
light gate (Figure 2.8). Given the length of the interrupt, 
it can work out the trolley’s initial velocity u. This is 
repeated for the second interrupt to give final velocity v.  
The computer also records the time interval t 3 − t1 
between these two velocity measurements. Now it can 
calculate the acceleration a as shown below:

u  =  
l1

t2 − t1
 

(l1 = length of first section of the interrupt card)

and

v  =  
l2

t4 − t3
 

(l2 = length of second section of the interrupt card)

Therefore:

a  =  change in velocity
time taken

 =  
v − u

t3 − t1
 

(Note that this calculation gives only an approximate 
value for a. This is because u and v are average speeds 
over a period of time; for an accurate answer we would 
need to know the speeds at times t1 and t3.)

Sometimes two light gates are used with a card 
of length l. The computer can still record the times as 
shown above and calculate the acceleration in the same 
way, with l1 =  l2 = l.

Measurements using a ticker-timer
The practical arrangement is the same as for measuring 
velocity. Now we have to think about how to interpret the 
tape produced by an accelerating trolley (Figure 2.9).

The tape is divided into sections, as before, every 
five dots. Remember that the time interval between 
adjacent dots is 0.02 s. Each section represents 0.10 s.

By placing the sections of tape side by side, you can 
picture the velocity–time graph.

The length of each section gives the trolley’s 
displacement in 0.10 s, from which the average velocity 
during this time can be found. This can be repeated 
for each section of the tape, and a velocity–time 
graph drawn. The gradient of this graph is equal to 
the acceleration. Table 2.2 and Figure 2.10 show some 
typical results.

The acceleration is calculated to be:

 a  =  Δv
Δt  =  0.93

0.20 
 ≈  4.7 m s−2

Section 
of tape

Time at 
start / s

Time 
interval / s

Length of 
section / cm

Velocity / 
m s−1

1 0.0 0.10 2.3 0.23

2 0.10 0.10 7.0 0.70

3 0.20 0.10 11.6 1.16

Table 2.2 Data for Figure 2.10.

Figure 2.8 Determining acceleration using a single 
light gate. 

light gate
l1 l2

t1 t2 t3 t4

interrupt
card

start

start
Figure 2.9 Ticker-tape for an 
accelerating trolley.

Figure 2.10  
Deducing 
acceleration from 
measurements of 
a ticker-tape.t / s

1.0

0.5

0
0.1 0.20

v / m s–1
1.5

Δt = 0.20 s

Δv = 0.93 m s–1
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!ere is a set of equations which allows us to calculate 
the quantities involved when an object is moving with a 
constant acceleration. !e quantities we are concerned 
with are:

s displacement a acceleration
u initial velocity t time taken
v final velocity

Here are the four equations of motion.

equation 1: v  =  u  +  at

equation 2: s  =  
(u + v)

2   ×  t

equation 3: s  =  ut  +  
1
2  at2

equation 4: v2  =  u2 + 2as

Take care using these equations. !ey can only be used:
 ■ for motion in a straight line
 ■ for an object with constant acceleration.

To get a feel for how to use these equations, we will 
consider some worked examples. In each example, we will 
follow the same procedure:
Step 1 We write down the quantities which we know, 

and the quantity we want to "nd.
Step 2 !en we choose the equation which links these 

quantities, and substitute in the values.
Step 3 Finally, we calculate the unknown quantity.
We will look at where these equations come from in the 
next section.

The equations of motion
As a space rocket rises from the ground, its velocity 
steadily increases. It is accelerating (Figure 2.12).

Eventually it will reach a speed of several kilometres 
per second. Any astronauts aboard "nd themselves pushed 
back into their seats while the rocket is accelerating.

!e engineers who planned the mission must be able to 
calculate how fast the rocket will be travelling and where it 
will be at any point in its journey. !ey have sophisticated 
computers to do this, using more elaborate versions of the 
equations given below.

BOX 2.1: Laboratory measurements of acceleration 
(continued)

Measurements using a motion sensor
The computer so#ware which handles the data 
provided by the motion sensor can calculate the 
acceleration of a trolley. However, because it deduces 
velocity from measurements of position, and then 
calculates acceleration from values of velocity, its 
precision is relatively poor.

6 Sketch a section of ticker-tape for a trolley which 
travels at a steady velocity and which then 
decelerates.

7 Figure 2.11 shows the dimensions of an 
interrupt card, together with the times recorded 
as it passed through a light gate. Use these 
measurements to calculate the acceleration of the 
card. (Follow the steps outlined on page 19.)

8 Two adjacent five-dot sections of a ticker-tape 
measure 10 cm and 16 cm, respectively. The interval 
between dots is 0.02 s. Deduce the acceleration of 
the trolley which produced the tape.

5.0 cm 5.0 cm

0 s 0.20 s 0.30 s 0.35 s

Figure 2.11 For Question 7. 

Figure 2.12 A rocket accelerates as it li#s o" from the ground. 
QUESTIONS
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4 The rocket shown in Figure 2.12 li#s o" from rest with an 
acceleration of 20 m s−2. Calculate its velocity a#er 50 s.

 Step 1 What we know: u  =  0 m s−1 

 a  =  20 m s−2 

 t  =  50 s

 and what we want to know:  v  =  ?

 Step 2 The equation linking u, a, t and v is equation 1:
v  =  u + at

 Substituting gives:
v  =  0 + (20 × 50)

 Step 3 Calculation then gives:
v  =  1000 m s−1

 So the rocket will be travelling at 1000 m s−1 a#er 50 s. 
This makes sense, since its velocity increases by 20 m s−1 
every second, for 50 s.

 You could use the same equation to work out how long 
the rocket would take to reach a velocity of 2000 m s−1, 
or the acceleration it must have to reach a speed of 
1000 m s−1 in 40 s, and so on.

5 The car shown in Figure 2.13 is travelling along a straight 
road at 8.0 m s−1. It accelerates at 1.0 m s−2 for a distance 
of 18 m. How fast is it then travelling?

 In this case, we will have to use a di"erent equation, 
because we know the distance during which the car 
accelerates, not the time.

 Step 1 What we know: u  =  8.0 m s−1 

 a  =  1.0 m s−2 

 s  =  18 m

 and what we want to know: v  =  ?

 Step 2 The equation we need is equation 4:
v2  =  u2 + 2as

 Substituting gives:
v2  =  8.02 + (2 × 1.0 × 18)

 Step 3 Calculation then gives:
 v2  =  64 + 36 = 100 m2 s−2

 v  =  10 m s−1

 So the car will be travelling at 10 m s−1 when it stops 
accelerating.

 (You may find it easier to carry out these calculations 
without including the units of quantities when you 
substitute in the equation. However, including the units 
can help to ensure that you end up with the correct units 
for the final answer.)

6 A train (Figure 2.14) travelling at 20 m s−1 accelerates at 
0.50 m s−2 for 30 s. Calculate the distance travelled by the 
train in this time.

 Step 1 What we know: u  =  20 m s−1 

 t  =  30 s 
 a  =  0.50 m s−2

 and what we want to know: s  =  ?

 Step 2 The equation we need is equation 3:

s  =  ut + 12 
at2

 Substituting gives:

s  =  (20 × 30) +  12  × 0.5 × (30)2

 Step 3 Calculation then gives:
s  =  600 + 225 = 825 m

 So the train will travel 825 m while it is accelerating.

u = 8.0 m s–1

s = 18 m

v = ?

u = 20 m s–1

Figure 2.13 For Worked example 5. This car accelerates 
for a short distance as it travels along the road. 

Figure 2.14 For Worked example 6. This train 
accelerates for 30 s.

WORKED EXAMPLES
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Deriving the equations of 
motion
On the previous pages, we have seen how to make use of 
the equations of motion. But where do these equations 
come from? !ey arise from the de"nitions of velocity and 
acceleration.

We can "nd the "rst two equations from the velocity–
time graph shown in Figure 2.16. !e graph represents the 
motion of an object. Its initial velocity is u. A$er time t, its 
"nal velocity is v.

7 The cyclist in Figure 2.15 is travelling at 15 m s−1. 
She brakes so that she doesn’t collide with the wall. 
Calculate the magnitude of her deceleration.

 This example shows that it is sometimes necessary 
to rearrange an equation, to make the unknown 
quantity its subject. It is easiest to do this before 
substituting in the values.

 Step 1 What we know:  u  =  15 m s−1 

 v  =  0 m s−1 

 s  =  18 m

 and what we want to know: a  =  ?

 Step 2 The equation we need is equation 4:
v 2  =  u2 + 2as

 Rearranging gives:

a  =  
v2 − u2

2s

a  =  
02  − 152

2 × 18   =  
− 225

36

 Step 3 Calculation then gives:
a  =  −6.25 m s−2 ≈ −6.3 m s−2

 So the cyclist will have to brake hard to achieve a 
deceleration of magnitude 6.3 m s−2. The minus sign 
shows that her acceleration is negative,  
i.e. a deceleration.

Figure 2.15 For Worked example 7. The cyclist 
brakes to stop herself colliding with the wall. 

u = 15 m s–1

s = 18 m

 9 A car is initially stationary. It has a constant 
acceleration of 2.0 m s−2.
a Calculate the velocity of the car a#er 10 s.
b Calculate the distance travelled by the car at 

the end of 10 s.
c Calculate the time taken by the car to reach a 

velocity of 24 m s−1.

 10 A train accelerates steadily from 4.0 m s−1 to 
20 m s−1 in 100 s.
a Calculate the acceleration of the train.
b From its initial and final velocities, calculate 

the average velocity of the train.
c Calculate the distance travelled by the train in 

this time of 100 s.

 11 A car is moving at 8.0 m s−1. The driver makes 
it accelerate at 1.0 m s−2 for a distance of 18 m. 
What is the final velocity of the car?

Ve
lo

ci
ty

Time

v

u

t

at21
2

ut

0
0

v – u = at

Figure 2.16 This graph shows the variation of velocity of an 
object with time. The object has constant acceleration. 

WORKED EXAMPLES (continued)

QUESTIONS
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So
s = ut + 12 at2 (equation 3)

Looking at Figure 2.16, you can see that the two terms on 
the right of the equation correspond to the areas of the 
rectangle and the triangle which make up the area under 
the graph. Of course, this is the same area as the rectangle 
in Figure 2.17.

Equation 4
Equation 4 is also derived from equations 1 and 2:

v = u + at (equation 1)

s = (u + u)
2  × t (equation 2)

Substituting for time t from equation 1 gives:

s = (u + v) 
2   +  (v + u)

a  (equation 2)

Rearranging this gives:
2as = (u + v)(v − u)

 = v2 − u2

or simply:
v2 = u2 + 2as (equation 4)

Investigating road tra!ic accidents
!e police frequently have to investigate road tra)c 
accidents. !ey make use of many aspects of physics, 
including the equations of motion. !e next two questions 
will help you to apply what you have learned to situations 
where police investigators have used evidence from skid 
marks on the road.

Equation 1
!e graph of Figure 2.16 is a straight line, therefore the 
object’s acceleration a is constant. !e gradient (slope) of 
the line is equal to acceleration.

!e acceleration is de"ned as:

a = (v − u)
t

which is the gradient of the line. Rearranging this gives the 
"rst equation of motion:

v = u + at (equation 1)

Equation 2
Displacement is given by the area under the velocity–time 
graph. Figure 2.17 shows that the object’s average velocity 
is half-way between u and v. So the object’s average 
velocity, calculated by averaging its initial and "nal 
velocities, is given by:

(u − v)
2

!e object’s displacement is the shaded area in Figure 2.17. 
!is is a rectangle, and so we have:

displacement = average velocity × time taken
and hence:

s = (u + v)
2   ×  t (equation 2)

Equation 3
From equations 1 and 2, we can derive equation 3:

 v = u + at (equation 1)

 s = (u + v)
2  × t (equation 2)

Substituting v from equation 1 gives:

s = (u + u + at)
2  × t

s = 2ut
2  + at2

2

t

v

u

average velocity

Ve
lo

ci
ty

Time
0

0
Figure 2.17 The average velocity is half-way between u and v. 

 12 Trials on the surface of a new road show that, 
when a car skids to a halt, its acceleration is 
−7.0 m s−2. Estimate the skid-to-stop distance  
of a car travelling at a speed limit of 30 m s−1 
(approx. 110 km h−1 or 70 mph).

 13 At the scene of an accident on a country road, 
police find skid marks stretching for 50 m. 
Tests on the road surface show that a skidding 
car decelerates at 6.5 m s−2. Was the car which 
skidded exceeding the speed limit of 25 m s−1 
(90 km h−1) on this road?

QUESTIONS
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In this case each square is 1 m s−1 on the y-axis by 1 s 
on the x-axis, so the area of each square is 1 × 1 = 1 m and 
the displacement is 250 m. In other cases note carefully the 
value of each side of the square you have chosen.

Uniform and non-uniform 
acceleration
It is important to note that the equations of motion 
only apply to an object which is moving with a constant 
acceleration. If the acceleration a was changing, you 
wouldn’t know what value to put in the equations. 
Constant acceleration is o$en referred to as uniform 
acceleration.

!e velocity–time graph in Figure 2.18 shows non-
uniform acceleration. It is not a straight line; its gradient 
is changing (in this case, decreasing).

t / s

20

10

0
10 20 300

v / m s–1

15

5

30

25

40

Δt = 20 s

Δs = 10 m

Figure 2.18 This curved velocity–time graph cannot be 
analysed using the equations of motion. 

!e acceleration at any instant in time is given by the 
gradient of the velocity–time graph. !e triangle in Figure 
2.18 shows how to "nd the acceleration at t = 20 seconds:

 ■ At the time of interest, mark a point on the graph.
 ■ Draw a tangent to the curve at that point.
 ■ Make a large right-angled triangle, and use it to find the 

gradient.

You can "nd the change in displacement of the body as it 
accelerates by determining the area under the velocity–
time graph.

To "nd the displacement of the object in Figure 2.18 
between t = 0 and 20 s, the most straightforward, but 
lengthy, method is just to count the number of small 
squares.

In this case up to t = 20 s, there are about 250 small 
squares. !is is tedious to count but you can save yourself 
a lot of time by drawing a line from the origin to the point 
at 20 s. !e area of the triangle is easy to "nd (200 small 
squares) and then you only have to count the number of 
small squares between the line you have drawn and the 
curve on the graph (about 50 squares)

t / s

16

8

0
10 20 300

v / m s–1

12

4

20

 14 The graph in Figure 2.19 represents the motion of 
an object moving with varying acceleration. Lay 
your ruler on the diagram so that it is tangential to 
the graph at point P.
a What are the values of time and velocity at this 

point?
b Estimate the object’s acceleration at this point.

 15 The velocity–time graph (Figure 2.20) represents 
the motion of a car along a straight road for a 
period of 30 s.
a Describe the motion of the car.
b From the graph, determine the car’s initial 

and final velocities over the time of 30 s.
c Determine the acceleration of the car.
d By calculating the area under the graph, 

determine the displacement of the car.
e Check your answer to part d by calculating the 

car’s displacement using s  =  ut  +  12 at2.

t / s

200

100

0
5 10 150

300

20

v / m s–1

P

Figure 2.19 For Question 14.

Figure 2.20 For Question 15.

QUESTIONS
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Determining g
One way to measure the acceleration of free fall g would be 
to try bungee-jumping (Figure 2.22). You would need to 
carry a stopwatch, and measure the time between jumping 
from the platform and the moment when the elastic rope 
begins to slow your fall. If you knew the length of the 
unstretched rope, you could calculate g.

!ere are easier methods for "nding g which can be used 
in the laboratory. !ese are described in Box 2.2.

Acceleration caused by gravity
If you drop a ball or stone, it falls to the ground. Figure 
2.21, based on a multi(ash photograph, shows the ball at 
equal intervals of time. You can see that the ball’s velocity 
increases as it falls because the spaces between the images 
of the ball increase steadily. !e ball is accelerating.

Figure 2.21 This diagram of a falling ball, based on a 
multiflash photo, clearly shows that the ball’s velocity 
increases as it falls.

A multi(ash photograph is useful to demonstrate 
that the ball accelerates as it falls. Usually, objects fall too 
quickly for our eyes to be able to observe them speeding 
up. It is easy to imagine that the ball moves quickly as soon 
as you let it go, and falls at a steady speed to the ground. 
Figure 2.21 shows that this is not the case.

If we measure the acceleration of a freely falling object 
on the surface of the Earth, we "nd a value of about 
9.81 m s−2. !is is known as the acceleration of free fall, 
and is given the symbol g:

acceleration of free fall, g = 9.81 m s−2

!e value of g depends on where you are on the Earth’s 
surface, but we usually take g = 9.81 m s−2.

If we drop an object, its initial velocity u = 0. How far 
will it fall in time t? Substituting in s = ut  +  12  at2 gives 
displacement s:

 s = 12 × 9.81 × t2

 = 4.9 × t2

Hence, by timing a falling object, we can determine g.

 16 If you drop a stone from the edge of a cli", its initial 
velocity u  =  0, and it falls with acceleration  
g  =  9.81 m s−2. You can calculate the distance s it 
falls in a given time t using an equation of motion.
a Copy and complete Table 2.3, which shows how 

s depends on t.
b Draw a graph of s against t.
c Use your graph to find the distance fallen by 

the stone in 2.5 s.
d Use your graph to find how long it will take the 

stone to fall to the bottom of a cli" 40 m high. 
Check your answer using the equations  
of motion.

Time / s 0 1.0 2.0 3.0 4.0

Displacement / m 0 4.9

Table 2.3 Time (t) and displacement (s) data for 
Question 16.

 17 An egg falls o" a table. The floor is 0.8 m from the 
table-top.
a Calculate the time taken to reach the ground.
b Calculate the velocity of impact with the 

ground.

Figure 2.22 A bungee-jumper falls with initial acceleration g. 

QUESTIONS
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BOX 2.2: Laboratory measurements of g

Measuring g using an electronic timer
In this method, a steel ball-bearing is held by an 
electromagnet (Figure 2.23). When the current to the 
magnet is switched o", the ball begins to fall and 
an electronic timer starts. The ball falls through a 
trapdoor, and this breaks a circuit to stop the timer. 
This tells us the time taken for the ball to fall from rest 
through the distance h between the bottom of the ball 
and the trapdoor.

Here is how we can use one of the equations of motion 
to find g:

 displacement s  =  h
 time taken  =  t
 initial velocity u  =  0
 acceleration a  =  g

Substituting in s = ut  +  12 at2 gives:
h  =  1

2 gt2

and for any values of h and t we can calculate a value for g.
A more satisfactory procedure is to take 

measurements of t for several di"erent values of h. The 
height of the ball bearing above the trapdoor is varied 
systematically, and the time of fall measured several 
times to calculate an average for each height. Table 
2.4 and Figure 2.24 show some typical results. We can 
deduce g from the gradient of the graph of h against t2.
The equation for a straight line through the origin is:

y  =  mx

In our experiment we have:

 h =  1
2 g   t2

   
 y =  m   x

The gradient of the straight line of a graph of h 
against t 2 is equal to g

2 . Therefore:

 gradient  =  
g
2  =  

0.84
0.20  =  4.2

 g  =  4.2 × 2 =  8.4 m s−2

Sources of uncertainty
The electromagnet may retain some magnetism when it 
is switched o", and this may tend to slow the ball’s fall. 
Consequently, the time t recorded by the timer may be 
longer than if the ball were to fall completely freely.  
From h = 12 gt2, it follows that, if t is too great, the 
experimental value of g will be too small. This is an 
example of a systematic error – all the results are 
systematically distorted so that they are too great (or too 
small) as a consequence of the experimental design.

Measuring the height h is awkward. You can probably 
only find the value of h to within ±1 mm at best. So there 
is a random error in the value of h, and this will result in a 
slight scatter of the points on the graph, and a degree of 
uncertainty in the final value of g. For more about errors, 
see P1: Practical skills for AS.

electromagnet
ball-bearing

trapdoor

timer
h

Figure 2.23 The timer records the time for the ball to 
fall through the distance h.

h / m t / s t2 / s2

0.27 0.25 0.063

0.39 0.30 0.090

0.56 0.36 0.130

0.70 0.41 0.168

0.90 0.46 0.212

Table 2.4 Data for Figure 2.24. These are mean values.

t2 / s2

0.8

0.6

0.4

0.2

0
0.05 0.100

1.0

0.250.15 0.20

h / m

h = 0.84 m

Figure 2.24 The acceleration of free fall can be determined 
from the gradient. 
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BOX 2.2: Laboratory measurements of g (continued)

Measuring g using a ticker-timer
Figure 2.25 shows a weight falling. As it falls, it pulls a 
tape through a ticker-timer. The spacing of the dots on 
the tape increases steadily, showing that the weight 
is accelerating. You can analyse the tape to find the 
acceleration, as discussed on page 19.

Measuring g using a light gate
Figure 2.26 shows how a weight can be attached to a 
card ‘interrupt’. The card is designed to break the light 
beam twice as the weight falls. The computer can then 
calculate the velocity of the weight twice as it falls, and 
hence find its acceleration:

 initial velocity u  =  x
t2 −  t1

 final velocity v  =  x
t4 −  t3

Therefore:

 acceleration a  =  v − u
t3 −  t1

The weight can be dropped from di" erent heights above 
the light gate. This allows you to find out whether its 
acceleration is the same at di" erent points in its fall. This 
is an advantage over Method 1, which can only measure 
the acceleration from a stationary start.

This is not a very satisfactory method of measuring 
g. The main problem arises from friction between the 
tape and the ticker-timer. This slows the fall of the 
weight and so its acceleration is less than g. (This is 
another example of a systematic error.)

The e" ect of friction is less of a problem for a large 
weight, which falls more freely. If measurements are 
made for increasing weights, the value of acceleration 
gets closer and closer to the true value of g.

Figure 2.25 A falling weight pulls a tape through a 
ticker-timer. 

ticker-timer

ticker-tape

weight

a.c.

x

x
t4

t3

t2

falling plate

light
gate

t1

computer

Figure 2.26 The weight accelerates as it falls. The upper 
section of the card falls more quickly through the light gate. 

8 To get a rough value for g, a student dropped a stone 
from the top of a cli" . A second student timed the 
stone’s fall using a stopwatch. Here are their results:

  estimated height of cli"   = 30 m

  time of fall =  2.6 s

 Use the results to estimate a value for g.

 Step 1 Calculate the average speed of the stone:

average speed of stone during fall =  
30
2.6  = 11.5 m s−1

 Step 2 Find the values of v and u:
 final speed v  = 2 × 11.5 m s−1 =  23.0 m s−1

 initial speed u  = 0 m s−1

 Step 3 Substitute these values into the equation for 
acceleration:

a  =  
v − u

t   =  
23.0
2.6   =  8.8 m s−2

 Note that you can reach the same result more directly 
using s  =  ut  +  1

2 at2, but you may find it easier to follow 
what is going on using the method given here. We 
should briefly consider why the answer is less than the 
expected value of g = 9.81 m s−2. It might be that the cli"  
was higher than the student’s estimate. The timer may 
not have been accurate in switching the stopwatch on 
and o" . There will have been air resistance which slowed 
the stone’s fall.

WORKED EXAMPLE
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of magnitude g, which slows it down, and when it falls 
it has an acceleration of g, which speeds it up. !e ball’s 
horizontal motion is una#ected by gravity. In the absence 
of air resistance, the ball has a constant velocity in the 
horizontal direction. We can treat the ball’s vertical 
and horizontal motions separately, because they are 
independent of one another.

Components of a vector
In order to understand how to treat the velocity in the 
vertical and horizontal directions separately we start by 
considering a constant velocity.

If an aeroplane has a constant velocity v at an angle θ 
as shown in Figure 2.28, then we say that this velocity has 
two e#ects or components, vN in a northerly direction 
and vE in an easterly direction. !ese two components of 
velocity add up to make the actual velocity v.

!is process of taking a velocity and determining its 
e#ect along another direction is known as resolving the 
velocity along a di#erent direction. In e#ect splitting the 
velocity into two components at right angles is the reverse 

Motion in two dimensions – 
projectiles
A curved trajectory
A multi(ash photograph can reveal details of the path, or 
trajectory, of a projectile. Figure 2.27 shows the trajectories 
of a projectile – a bouncing ball. Once the ball has le$ the 
child’s hand and is moving through the air, the only force 
acting on it is its weight.

!e ball has been thrown at an angle to the horizontal. 
It speeds up as it falls – you can see that the images of the 
ball become further and further apart. At the same time, it 
moves steadily to the right. You can see this from the even 
spacing of the images across the picture. !e ball’s path has a 
mathematical shape known as a parabola. A$er it bounces, 
the ball is moving more slowly. It slows down, or decelerates, 
as it rises – the images get closer and closer together.

We interpret this picture as follows. !e vertical 
motion of the ball is a#ected by the force of gravity, that 
is, its weight. When it rises it has a vertical deceleration 

 18 A steel ball falls from rest through a height of 
2.10 m. An electronic timer records a time of 
0.67 s for the fall.
a Calculate the average acceleration of the ball 

as it falls.
b Suggest reasons why the answer is not exactly 

9.81 m s−2.

 19 In an experiment to determine the acceleration 
due to gravity, a ball was timed electronically as 
it fell from rest through a height h. The times t 
shown in Table 2.5 were obtained.
a Plot a graph of h against t2.
b From the graph, determine the acceleration of 

free fall, g.
c Comment on your answer.

Height / m 0.70 1.03 1.25 1.60 1.99

Time / s 0.99 1.13 1.28 1.42 1.60

Table 2.5 Height (h) and time (t) data for  
Question 19.

20 In Chapter 1, we looked at how to use a motion 
sensor to measure the speed and position of a 
moving object. Suggest how a motion sensor 
could be used to determine g.

Figure 2.27 A bouncing ball is an example of a projectile. 
This multiflash photograph shows details of its motion which 
would escape the eye of an observer. 

vN = v cos θ  

vE = v sin θ 

N

θ

v

Figure 2.28 Components of a velocity. The component due 
north is vN = v cos θ and the component due east is vE = v sin θ. 

QUESTIONS
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Understanding projectiles
We will "rst consider the simple case of a projectile 
thrown straight up in the air, so that it moves vertically. 
!en we will look at projectiles which move horizontally 
and vertically at the same time.

Up and down
A stone is thrown upwards with an initial velocity of 
20 m s−1. Figure 2.30 shows the situation.

of adding together two vectors – it is splitting one vector 
into two vectors along convenient directions.

To "nd the component of any vector (e.g. displacement, 
velocity, acceleration) in a particular direction, we can use 
the following strategy:
Step 1 Find the angle θ between the vector and the 

direction of interest.
Step 2 Multiply the vector by the cosine of the angle θ.
So the component of an object’s velocity v at angle θ to v is 
equal to v cos θ (Figure 2.28).

21 Find the x- and y-components of each of the 
vectors shown in Figure 2.29. (You will need to use 
a protractor to measure angles from the diagram.)

y

x

b

5.0 m s–1 

c

6.0 m s–2

80 N 

d

a 20 N 

Figure 2.29  
The vectors for 
Question 21.

It is important to use a consistent sign convention 
here. We will take upwards as positive, and downwards as 
negative. So the stone’s initial velocity is positive, but its 
acceleration g is negative. We can solve various problems 
about the stone’s motion by using the equations of motion.

How high?
How high will the stone rise above ground level of the cli#?

As the stone rises upwards, it moves more and more 
slowly – it decelerates, because of the force of gravity. At its 
highest point, the stone’s velocity is zero. So the quantities 
we know are:

initial velocity = u = 20 m s−1

"nal velocity = v = 0 m s−1

acceleration = a = −9.81 m s−2

displacement = s = ?
!e relevant equation of motion is v2 = u2 + 2as. 
Substituting values gives:

 02 = 202 + 2 × (−9.81) × s

 0 = 400 − 19.62s

 s = 400
19.62 = 20.4 m ≈ 20 m

!e stone rises 20 m upwards, before it starts to fall again.

Figure 2.30 Standing at the edge of the cli", you throw a 
stone vertically upwards. The height of the cli" is 25 m. 

positive
direction

QUESTION
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also shown in Figure 2.31. Study the table and the graph. 
You should notice the following:

 ■ The horizontal distance increases steadily. This is because 
the ball’s horizontal motion is una"ected by the force of 
gravity. It travels at a steady velocity horizontally so we can 

use v  =  
s
t  

.

 ■ The vertical distances do not show the same pattern. 
The ball is accelerating downwards so we must use the 
equations of motion. (These figures have been calculated 
using g = 9.81 m s−2.)

Time / s Horizontal 
distance / m

Vertical 
distance / m

0.00 0.00 0.000

0.04 0.10 0.008

0.08 0.20 0.031

0.12 0.30 0.071

0.16 0.40 0.126

0.20 0.50 0.196

0.24 0.60 0.283

0.28 0.70 0.385

Table 2.7 Data for the example of a moving ball, as shown in 
Figure 2.31.

You can calculate the distance s fallen using the 
equation of motion s = ut +  12 at2. (!e initial vertical 
velocity u = 0.)

!e horizontal distance is calculated using:
horizontal distance = 2.5 × t

!e vertical distance is calculated using:
vertical distance = 12 × 9.81 × t2

How long?
How long will it take from leaving your hand for the stone 
to fall back to the cli,op?

When the stone returns to the point from which it was 
thrown, its displacement s is zero. So:

s = 0 u = 20 m s−1 a = −9.81 m s−2 t = ?
Substituting in s = ut  + 12 at2 gives:

 0 = 20t  ×  12 (−9.81) × t2

 = 20t  −  4.905t2 = (20 − 4.905t) ×  t
!ere are two possible solutions to this:

 ■ t  = 0 s, i.e. the stone had zero displacement at the instant it 
was thrown

 ■ t  =  4.1 s, i.e. the stone returned to zero displacement a#er 
4.1 s, which is the answer we are interested in.

Falling further
!e height of the cli# is 25 m. How long will it take the 
stone to reach the foot of the cli#?

!is is similar to the last example, but now the stone’s 
"nal displacement is 25 m below its starting point. By  
our sign convention, this is a negative displacement, and  
s = −25 m.

 22 In the example above (Falling further), calculate 
the time it will take for the stone to reach the foot 
of the cli".

 23 A ball is fired upwards with an initial velocity of 
30 m s−1. Table 2.6 shows how the ball’s velocity 
changes. (Take g = 9.81 m s−2.)
a Copy and complete the table.
b Draw a graph to represent the data.
c Use your graph to deduce how long the ball 

took to reach its highest point.

Velocity / m s−1 30 20.19

Time / s 0 1.0 2.0 3.0 4.0 5.0

Table 2.6 For Question 23.

Vertical and horizontal at the same time
Here is an example to illustrate what happens when an 
object travels vertically and horizontally at the same time.

In a toy, a ball-bearing is "red horizontally from 
a point 0.4 m above the ground. Its initial velocity is 
2.5 m s−1. Its positions at equal intervals of time have been 
calculated and are shown in Table 2.7. !ese results are 

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1
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Figure 2.31 This sketch shows the path of the ball projected 
horizontally. The arrows represent the horizontal and vertical 
components of its velocity.
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 24 A stone is thrown horizontally from the top of a 
vertical cli" and lands 4.0 s later at a distance 12.0 m 
from the base of the cli". Ignore air resistance.
a Calculate the horizontal speed of the stone.
b Calculate the height of the cli".

 25 A stone is thrown with a velocity of 8 m s−1 into the air 
at an angle of 40° to the horizontal.
a Calculate the vertical component of the velocity.
b State the value of the vertical component of the 

velocity when the stone reaches its highest point. 
Ignore air resistance.

c Use your answers to a and b to calculate the time 
the stone takes to reach it highest point.

d Calculate the horizontal component of the velocity.
e Use your answers to c and d to find the horizontal 

distance travelled by the stone as it climbs to its 
highest point.

 26 The range of a projectile is the horizontal distance 
it travels before it reaches the ground. The greatest 
range is achieved if the projectile is thrown at 45° to 
the horizontal.

  A ball is thrown with an initial velocity of 40 m s−1. 
Calculate its greatest possible range when air 
resistance is considered to be negligible.

 9 A stone is thrown horizontally with a velocity of 12 m s−1 
from the top of a vertical cli".

  Calculate how long the stone takes to reach the ground 
40 m below and how far the stone lands from the base 
of the cli".

  Step 1 Consider the ball’s vertical motion. It has 
zero initial speed vertically and travels 40 m with 
acceleration 9.81 m s−2 in the same direction.

 s  =  ut  +  12 at2

 40 =  0 +  12 × 9.81 ×  t 2

  Thus t  = 2.86 s.

  Step 2 Consider the ball’s horizontal motion. The ball 
travels with a constant horizontal velocity, 12 m s−1, as 
long as there is no air resistance.

  distance travelled = u × t = 12 × 2.86 = 34.3 m

  Hint: You may find it easier to summarise the 
information like this:

  vertically s  =  40 u  =  0 a  =  9.81 t  =  ? v  =  ?

  horizontally u  = 12 v  = 12 a  =  0 t  =  ? s  =  ?

 10 A ball is thrown with an initial velocity of 20 m s−1 at an 
angle of 30° to the horizontal (Figure 2.32). Calculate 
the horizontal distance travelled by the ball (its range).

  Step 1 Split the ball’s initial velocity into horizontal 
and vertical components:
initial velocity = u = 20 m s−1

horizontal component of initial velocity
 =  u cos θ  = 20 × cos 30° = 17.3 m s−1

vertical component of initial velocity
 =  u sin θ   =  20 × sin 30° = 10 m s−1

  Step 2 Consider the ball’s vertical motion. How long 
will it take to return to the ground? In other words, 
when will its displacement return to zero?
u  = 10 m s−1 a  = −9.81 m s−2 s  = 0 t  = ?

  Using s = ut +  12  at2, we have:
0 = 10t  −  4.905t2

  This gives t = 0 s or t = 2.04 s. So the ball is in the air  
for 2.04 s.

  Step 3 Consider the ball’s horizontal motion. How 
far will it travel horizontally in the 2.04 s before it 
lands? This is simple to calculate, since it moves with a 
constant horizontal velocity of 17.3 m s−1.
horizontal displacement s = 17.3 ×  2.04

 = 35.3 m

  Hence the horizontal distance travelled by the ball  
(its range) is about 35 m.

30

u = 20 m s–1

Figure 2.32 Where will the ball land?

QUESTIONS

WORKED EXAMPLES



Summary
 ■ Acceleration is equal to the rate of change of velocity.

 ■ Acceleration is a vector quantity.

 ■ The gradient of a velocity–time graph is equal to 
acceleration: 

 a = ∆v
∆t

 ■ The area under a velocity–time graph is equal to 
displacement (or distance travelled).

 ■ The equations of motion (for constant acceleration in 
a straight line) are:

v  = u + at s  =  ut +  12 at 2

s  =  (u + v)
2  v2  =  u2 + 2as

 ■ Vectors such as forces can be resolved into 
components. Components at right angles to one 
another can be treated independently of one another. 
For a velocity v at an angle θ to the x-direction, the 
components are:

x-direction: v cos θ

y-direction: v sin θ

 ■ For projectiles, the horizontal and vertical components 
of velocity can be treated independently. In the 
absence of air resistance, the horizontal component 
of velocity is constant while the vertical component of 
velocity downwards increases at a rate of 9.81 m s−2.

End-of-chapter questions
1 A motorway designer can assume that cars approaching a motorway enter a slip road with a velocity 

of 10 m s−1 and reach a velocity of 30 m s−1 before joining the motorway. Calculate the minimum 
length for the slip road, assuming that vehicles have an acceleration of 4.0 m s−2. [4]

2 A train is travelling at 50 m s−1 when the driver applies the brakes and gives the train a constant deceleration 
of magnitude 0.50 m s−2 for 100 s. Describe what happens to the train. Calculate the distance travelled 
by the train in 100 s. [7]

3 A boy stands on a cli"  edge and throws a stone vertically upwards at time t  =  0. The stone leaves his 
hand at 20 m s−1. Take the acceleration of the ball as 9.81 m s−2.
a Show that the equation for the displacement of the ball is:
 s  = 20t − 4.9t2 [2]
b What is the height of the stone 2.0 s a# er release and 6.0 s a# er release? [3]
c When does the stone return to the level of the boy’s hand? Assume the boy’s hand does not move 

vertically a# er the ball is released. [4]
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4 The graph in Figure 2.33 shows the variation of velocity 
with time of two cars, A and B, which are travelling in 
the same direction over a period of time of 40 s. Car A, 
travelling at a constant velocity of 40 m s−1, overtakes 
car B at time t = 0. In order to catch up with car A, car B 
immediately accelerates uniformly for 20 s to reach a 
constant velocity of 50 m s−1. Calculate:

a how far A travels during the first 20 s [2]
b the acceleration and distance of travel of B during the first 20 s [5]
c the additional time taken for B to catch up with A [2]
d the distance each car will have then travelled since t = 0. [2]

5 An athlete competing in the long jump leaves the ground with a velocity of 5.6 m s−1 at an angle of 30° 
to the horizontal.
a Determine the vertical component of the velocity and use this value to find the time between leaving 

the ground and landing. [2]
b Determine the horizontal component of the velocity and use this value to find the horizontal 

distance travelled. [4]

6 Figure 2.34 shows an arrangement used to measure the acceleration of a metal plate as it falls vertically. 
The metal plate is released from rest and falls a distance of 0.200 m before breaking light beam 1. It then 
falls a further 0.250 m before breaking light beam 2.

Figure 2.34 For End-of-chapter Question 6. 

a Calculate the time taken for the plate to fall 0.200 m from rest. (You may assume that the metal plate 
falls with an acceleration equal to the acceleration of free fall.) [2]

b The timer measures the speed of the metal plate as it falls through each light beam. The speed as it 
falls through light beam 1 is 1.92 m s−1 and the speed as it falls through light beam 2 is 2.91 m s−1.
i Calculate the acceleration of the plate between the two light beams. [2]
ii State and explain one reason why the acceleration of the plate is not equal to the acceleration 

of free fall. [2]
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Figure 2.33 Velocity–time graphs for two cars, 
A and B. For End-of-chapter Question 4. 



7 Figure 2.35 shows the velocity–time graph for a vertically bouncing ball. The ball is released at A and strikes 
the ground at B. The ball leaves the ground at D and reaches its maximum height at E. The e" ects of air 
resistance can be neglected.

Figure 2.35 For End-of-chapter Question 7. 

a State:
i why the velocity at D is negative [1]
ii why the gradient of the line AB is the same as the gradient of line DE [1]
iii what is represented by the area between the line AB and the time axis [1]
iv why the area of triangle ABC is greater than the area of triangle CDE. [1]

b The ball is dropped from rest from an initial height of 1.2 m. A# er hitting the ground the ball rebounds 
to a height of 0.80 m. The ball is in contact with the ground between B and D for a time of 0.16 s.

 Using the acceleration of free fall, calculate:
i the speed of the ball immediately before hitting the ground [2]
ii the speed of the ball immediately a# er hitting the ground [2]
iii the acceleration of the ball while it is in contact with the ground. State the direction of this acceleration. [3]

8 A student measures the speed v of a trolley as it moves down a slope. The variation of v with time t is shown 
in the graph in Figure 2.36.

Figure 2.36 For End-of-chapter Question 8. 

a Use the graph to find the acceleration of the trolley when t  = 0.7 s. [2]
b State how the acceleration of the trolley varies between t  = 0 and t  = 1.0 s. Explain your answer by 

reference to the graph. [3]
c Determine the distance travelled by the trolley between t  = 0.6 and t  = 0.8 s. [3]
d The student obtained the readings for v using a motion sensor. The readings may have random 

errors and systematic errors. Explain how these two types of error a" ect the velocity–time graph. [2]
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 9 A car driver is travelling at speed v on a straight road. He comes over the top of a hill to find a fallen tree on 
the road ahead. He immediately brakes hard but travels a distance of 60 m at speed v before the brakes 
are applied. The skid marks le#  on the road by the wheels of the car are of length 140 m (Figure 2.37). 
The police investigate whether the driver was speeding and establish that the car decelerates at 2.0 m s−2 
during the skid.

Figure 2.37 For End-of-chapter Question 9. 

a Determine the initial speed v of the car before the brakes are applied. [2]
b Determine the time taken between the driver coming over the top of the hill and applying the brakes. 

Suggest whether this shows whether the driver was alert to the danger. [2]
c The speed limit on the road is 100 km/h. Determine whether the driver was breaking the speed limit. [2]

 10 A hot-air balloon rises vertically. At time t = 0, a ball is released from the balloon. Figure 2.38 shows the 
variation of the ball’s velocity v with t. The ball hits the ground at t  = 4.1 s.

Figure 2.38 For End-of-chapter Question 10. 

a Explain how the graph shows that the acceleration of the ball is constant. [1]
b Use the graph to:

i determine the time at which the ball reaches its highest point [1]
ii show that the ball rises for a further 12 m between release and its highest point [2]
iii determine the distance between the highest point reached by the ball and the ground. [2]

c The equation relating v and t is v  = 15 − 9.81t. Explain the significance in the equation of:
i the number 15 [1]
ii the negative sign. [1]

top of hill
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skid marks

140 m

–20

–10
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10

20
v / m s–1

1 2 3 4 t / s
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11 An aeroplane is travelling horizontally at a speed of 80 m s−1 and drops a crate of emergency supplies 
(Figure 2.39). To avoid damage, the maximum vertical speed of the crate on landing is 20 m s−1. 
You may assume air resistance is negligible.

Figure 2.39 For End-of-chapter Question 11.

a Calculate the maximum height of the aeroplane when the crate is dropped. [2]
b Calculate the time taken for the crate to reach the ground from this height. [2]
c The aeroplane is travelling at the maximum permitted height. Calculate the horizontal distance travelled 

by the crate a# er it is released from the aeroplane. [1]

80 m s–1
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Learning outcomes
You should be able to:

 ■ state Newton’s laws of motion
 ■ identify the forces acting on a body in di! erent situations
 ■ describe how the motion of a body is a! ected by the 

forces acting on it
 ■ solve problems using F = ma
 ■ relate derived units to base units in the SI system

Chapter 3:
Dynamics – 
explaining motion
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Force and acceleration
If you have ever flown in an aeroplane you will know 
how the back of the seat pushes you forwards when 
the aeroplane accelerates down the runway (Figure 
3.1). The pilot must control many forces on the 
aeroplane to ensure a successful take-o#.

In Chapters 1 and 2 we saw how motion can 
be described in terms of displacement, velocity, 
acceleration and so on. This is known as kinematics. 
Now we are going to look at how we can explain how 
an object moves in terms of the forces which change 
its motion. This is known as dynamics.

In this example we have F = 20 000 N and m = 10 000 kg, 
and so:

a  =  F
m  =  10 000

10 000
  = 2 m s−2

In Figure 3.2b, the train is decelerating as it comes into a 
station. Its acceleration is −3.0 m s−2. What force must be 
provided by the braking system of the train?

F = ma = 10 000 × −3 = −30 000 N
!e minus sign shows that the force must act towards 
the right in the diagram, in the opposite direction to the 
motion of the train.

Force, mass and acceleration
!e equation we used above, F = ma, is a simpli"ed version 
of Newton’s second law of motion.

For a body of constant mass, its acceleration is directly 
proportional to the resultant force applied to it.

An alternative form of Newton’s second law is given in 
Chapter 6 when you have studied momentum. Since 
Newton’s second law holds for objects that have a constant 
mass, this equation can be applied to a train whose mass 
remains constant during its journey. !e equation a = F

m 
relates acceleration, resultant force and mass. In  
particular, it shows that the bigger the force, the greater 
the acceleration it produces. You will probably feel that 
this is an unsurprising result. For a given object, the 
acceleration is directly proportional to the resultant force:

a  ∝ F

Calculating the acceleration
Figure 3.2a shows how we represent the force which 
the motors on a train provide to cause it to accelerate. 
!e resultant force is represented by a green arrow. !e 
direction of the arrow shows the direction of the resultant 
force. !e magnitude (size) of the resultant force of 
20 000 N is also shown.

Figure 3.1 An aircra# takes o" – the force provided by the 
engines causes the aircra# to accelerate. 

direction of acceleration a

F = 20 000 N
a

direction of acceleration ab
a = –3 m s–2

mass = 10 000 kg

direction of force F

Figure 3.2 A force is needed to make the train a accelerate, 
and b decelerate.

To calculate the acceleration a of the train produced by 
the resultant force F, we must also know the train’s mass m 
(Table 3.1). !ese quantities are related by:

a = F
m or F = ma

Quantity Symbol Unit
resultant force F N (newtons)

mass m kg (kilograms)

acceleration a m s−2 (metres per second squared)

Table 3.1 The quantities related by F = ma.
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!e equation also shows that the acceleration produced 
by a force depends on the mass of the object. !e mass of 
an object is a measure of its inertia, or its ability to resist 
any change in its motion. !e greater the mass, the smaller 
the acceleration which results. If you push your hardest 
against a small car (which has a small mass), you will have 
a greater e#ect than if you push against a more massive 
car (Figure 3.3). So, for a constant force, the acceleration is 
inversely proportional to the mass:

a  ∝ 1
m

!e train driver knows that, when the train is full during 
the rush hour, it has a smaller acceleration. !is is because 
its mass is greater when it is full of people. Similarly, 
it is more di)cult to stop the train once it is moving. 
!e brakes must be applied earlier to avoid the train 
overshooting the platform at the station.

mass m = 700 kg mass m = 2600 kg

F F

Figure 3.3 It is easier to make a small mass accelerate than a 
large mass. 

1 A cyclist of mass 60 kg rides a bicycle of mass 20 kg. 
When starting o", the cyclist provides a force of 
200 N. Calculate the initial acceleration.

 Step 1 This is a straightforward example. First, we 
must calculate the combined mass m of the bicycle 
and its rider:
m  =  20 +  60 = 80 kg

 We are given the force F:
force causing acceleration F  =  200 N

 Step 2 Substituting these values gives:

a  =  
F
m  =  

200
80   = 2.5 m s−2

 So the cyclist’s acceleration is 2.5 m s−2.

2 A car of mass 500 kg is travelling at 20 m s−1. The driver 
sees a red tra"ic light ahead, and slows to a halt in 
10 s. Calculate the braking force provided by the car.

 Step 1 In this example, we must first calculate the 
acceleration required. The car’s final velocity is 
0 m s−1, so its change in velocity Δv = 0 − 20 = −20 m s−1

 acceleration a  =  
change in velocity

time taken  

 =  ∆v
∆t

  =  
–20
10   = –2 ms–2

 Step 2 To calculate the force, we use:
F  =  ma  =  500 × −2  =  −1000 N

 So the brakes must provide a force of 1000 N. (The 
minus sign shows a force decreasing the velocity of 
the car.)

1 Calculate the force needed to give a car of mass 
800 kg an acceleration of 2.0 m s−2.

2 A rocket has a mass of 5000 kg. At a particular 
instant, the resultant force acting on the rocket is 
200 000 N. Calculate its acceleration.

3 (In this question, you will need to make use of  
the equations of motion which you studied in 
Chapter 2.) A motorcyclist of mass 60 kg rides a 
bike of mass 40 kg. As she sets o" from the lights, 
the forward force on the bike is 200 N. Assuming 
the resultant force on the bike remains constant, 
calculate the bike’s velocity a#er 5.0 s.

Understanding SI units
Any quantity that we measure or calculate consists of a 
value and a unit. In physics, we mostly use units from the 
SI system. !ese units are all de"ned with extreme care, 
and for a good reason. In science and engineering, every 
measurement must be made on the same basis, so that 
measurements obtained in di#erent laboratories can be 
compared. !is is important for commercial reasons, too. 
Suppose an engineering "rm in Taiwan is asked to produce 
a small part for the engine of a car which is to be assembled 
in India. !e dimensions are given in millimetres and the 
part must be made with an accuracy of a tiny fraction of 
a millimetre. All concerned must know that the part will 
"t correctly – it wouldn’t be acceptable to use a di#erent 
millimetre scale in Taiwan and India.

Engineering measurements, as well as many other 
technical measurements, are made using SI units to 
ensure that customers get what they expected (and can 
complain if they don’t). So governments around the 
world have set up standards laboratories to ensure that 
measuring instruments are as accurate as is required – 
scales weigh correctly, police speed cameras give reliable 
measurements, and so on. (Other, non-SI, units such as the 
foot, pound or hour, are de"ned in terms of SI units.)

QUESTIONS

WORKED EXAMPLES
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Other SI units
Using only seven base units means that only this number 
of quantities have to be de"ned with great precision. !ere 
would be confusion and possible contradiction if more 
units were also de"ned. For example, if the density of water 
were de!ned as exactly 1 g cm−3, then 1000 cm3 of a sample 
of water would have a mass of exactly 1 kg. However, it is 
unlikely that the mass of this volume of water would equal 
exactly the mass of the standard kilogram. !e standard 
kilogram, which is kept in France, is the one standard from 
which all masses can ultimately be measured.

All other units can be derived from the base units. !is 
is done using the de"nition of the quantity. For example, 
speed is de"ned as  distance

time  
, and so the base units of 

speed in the SI system are m s−1.
Since the de"ning equation for force is F  = ma, the base 

units for force are kg m s−2.
Equations that relate di#erent quantities must have the 

same base units on each side of the equation. If this does 
not happen the equation must be wrong.

When each term in an equation has the same base units 
the equation is said to be homogeneous.

Base units, derived units
!e metre, kilogram and second are three of the seven SI 
base units. !ese are de"ned with great precision so that 
every standards laboratory can reproduce them correctly.

Other units, such as units of speed (m s−1) and 
acceleration (m s−2) are known as derived units because 
they are combinations of base units. Some derived units, 
such as the newton and the joule, have special names 
which are more convenient to use than giving them in 
terms of base units. !e de"nition of the newton will show 
you how this works.

Defining the newton
Isaac Newton (1642–1727) played a signi"cant part 
in developing the scienti"c idea of force. Building on 
Galileo’s earlier thinking, he explained the relationship 
between force, mass and acceleration, which we now write 
as F = ma. For this reason, the SI unit of force is named 
a$er him.

We can use the equation F = ma to de"ne the newton (N).

One newton is the force that will give a 1 kg mass an 
acceleration of 1 m s−2 in the direction of the force.
1 N = 1 kg × 1 m s−2 or 1 N = 1 kg m s−2

The seven base units
In mechanics (the study of forces and motion), the units 
we use are based on three base units: the metre, kilogram 
and second. As we move into studying electricity, we will 
need to add another base unit, the ampere. Heat requires 
another base unit, the kelvin (the unit of temperature).

Table 3.2 shows the seven base units of the SI system. 
Remember that all other units can be derived from these 
seven. !e equations that relate them are the equations 
that you will learn as you go along (just as F = ma relates 
the newton to the kilogram, metre and second). !e unit 
of luminous intensity is not part of the A/AS course.

Base unit Symbol Base unit
length x, l, s etc. m (metre)

mass m kg (kilogram)

time t s (second)

electric current I A (ampere)

thermodynamic temperature T K (kelvin)

amount of substance n mol (mole)

luminous intensity I cd (candela)

Table 3.2 SI base quantities and units. In this course, you will 
learn about all of these except the candela.

4 The pull of the Earth’s gravity on an apple (its 
weight) is about 1 newton. We could devise a new 
international system of units by defining our unit 
of force as the weight of an apple. State as many 
reasons as you can why this would not be a very 
useful definition.

5 Determine the base units of:

a pressure (  = force
area  )

b energy ( = force × distance )

c density ( = mass
volume )

6 Use base units to prove that the following 
equations are homogeneous.
a pressure  

 = density × acceleration due to gravity × depth
b distance travelled  

 = initial speed × time +   12 acceleration × time2  
 (s = ut + 1

2  at2)

QUESTIONS

QUESTION
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The pull of gravity
Now we need to consider some speci" c forces – such as 
weight and friction.

When Isaac Newton was con" ned to his rural home 
to avoid the plague which was rampant in other parts of 
England, he is said to have noticed an apple fall to the 
ground. From this, he developed his theory of gravity 
which relates the motion of falling objects here on Earth to 
the motion of the Moon around the Earth, and the planets 
around the Sun.

! e force which caused the apple to accelerate was the 
pull of the Earth’s gravity. Another name for this force is the 
weight of the apple. ! e force is shown as an arrow, pulling 
vertically downwards on the apple (Figure 3.4). It is usual 
to show the arrow coming from the centre of the apple – 
its centre of gravity. ! e centre of gravity of an object is 
de" ned as the point where its entire weight appears to act.

Prefixes
Each unit in the SI system can have multiples and sub-
multiples to avoid using very high or low numbers. For 
example 1 millimetre (mm) is one thousandth of a metre 
and 1 micrometre (µm) is one millionth of a metre.

! e pre! x comes before the unit. In the unit mm, the 
" rst m is the pre" x milli and the second m is the unit 
metre. You will need to recognise a number of pre" xes for 
the A/AS course, as shown in Table 3.3.

Multiples Sub-multiples
Multiple Prefix Symbol Multiple Prefix Symbol 
103 kilo k 10−1 deci d

106 mega M 10−2 centi c

109 giga G 10−3 mill m

1012 tera T 10−6 micro µ

1015 peta P 10−9 nano n

10−12 pico p

Table 3.3 Multiples and sub-multiples. 

You must take care when using pre" xes.
 ■ Squaring or cubing prefixes – for example:

 1 cm = 10 −2 m
 so 1 cm2 = (10 −2 m)2 = 10 −4 m2

 and 1 cm3 = (10 −2 m)3 = 10 −6 m3.
 ■ Writing units – for example, you must leave a small space 

between each unit when writing a speed such as 3 m s−1, 
because if you write it as 3 ms−1 it would mean 
3 millisecond−1.

7 Find the area of one page of this book in cm2 and 
then convert your value to m2.

8 Write down in powers of ten the values of the 
following quantities:
a 60 pA
b 500 MW
c 20 000 mm

3 It is suggested that the time T for one oscillation of 
a swinging pendulum is given by the equation 
T 2 = 4π2(l/g) where l is the length of the pendulum 
and g is the acceleration due to gravity. Show that 
this equation is homogeneous.

 For the equation to be homogeneous, the term on 
the le# -hand side must have the same base units as 
all the terms on the right-hand side.

 Step 1 The base unit of time T is s. The base unit of 
the le# -hand side of the equation is therefore s2.

 Step 2 The base unit of l is m. The base units of g are 
m s−2. Therefore the base unit of the right-hand side is 

 
m

(m s−2) = s2. (Notice that the constant 4π2 has no 

 units.)
 Since the base units on the le# -hand side of the 

equation are the same as those on the right, the 
equation is homogeneous.

4 The density of water is 1.0 g cm−3. Calculate this value 
in kg m−3.

 Step 1 Find the conversions for the units:
1 g = 1 × 10−3 kg
1 cm3 = 1 × 10−6 m3

 Step 2 Use these in the value for the density of water:

 1.0 g cm−3 =  
1.0 × 1 × 10−3

1 × 10−6

 = 1.0 × 103 kg m−3

weight = mg

Figure 3.4 The weight of an object is a 
force caused by the Earth’s gravity. It acts 
vertically down on the object. 

QUESTIONSWORKED EXAMPLE

WORKED EXAMPLE
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On the Moon
!e Moon is smaller and has less mass than the Earth, and 
so its gravity is weaker. If you were to drop a stone on the 
Moon, it would have a smaller acceleration. Your hand is 
about 1 m above ground level; a stone takes about 0.45 s to 
fall through this distance on the Earth, but about 1.1 s on 
the surface of the Moon. !e acceleration of free fall on the 
Moon is about one-sixth of that on the Earth:

gMoon = 1.6 m s−2

It follows that objects weigh less on the Moon than on the 
Earth. !ey are not completely weightless, because the 
Moon’s gravity is not zero.

Mass and weight
We have now considered two related quantities, mass and 
weight. It is important to distinguish carefully between 
these (Table 3.4).

If your moon-buggy breaks down (Figure 3.5), it will 
be no easier to get it moving on the Moon than on the 
Earth. !is is because its mass does not change, because it 
is made from just the same atoms and molecules wherever 
it is. From F = ma, it follows that if m doesn’t change, you 
will need the same force F to start it moving.

However, your moon-buggy will be easier to li$ on the 
Moon, because its weight will be less. From W = mg, since 
g is less on the Moon, it has a smaller weight than when on 
the Earth.

Large and small
A large rock has a greater weight than a small rock, but if 
you push both rocks over a cli# at the same time, they will 
fall at the same rate. In other words, they have the same 
acceleration, regardless of their mass. !is is a surprising 
result. Common sense may suggest that a heavier object 
will fall faster than a lighter one. It is said that Galileo 
dropped a large cannon ball and a small cannon ball from 
the top of the Leaning Tower of Pisa in Italy, and showed 
that they landed simultaneously. He may never actually 
have done this, but the story illustrates that the result 
is not intuitively obvious – if everyone thought that the 
two cannon balls would accelerate at the same rate, there 
would not have been any experiment or story.

In fact, we are used to lighter objects falling more 
slowly than heavy ones. A feather dri$s down to the (oor, 
while a stone falls quickly. However, we are being misled 
by the presence of air resistance. !e force of air resistance 
has a large e#ect on the falling feather, and almost no 
e#ect on the falling stone. When astronauts visited the 
Moon (where there is virtually no atmosphere and so no 
air resistance), they were able to show that a feather and a 
stone fell side-by-side to the ground.

As we saw in Chapter 2, an object falling freely close 
to the Earth’s surface has an acceleration of roughly 
9.81 m s−2, the acceleration of free fall g.

We can "nd the force causing this acceleration using  
F = ma. !is force is the object’s weight. Hence the  
weight W of an object is given by:

weight = mass × acceleration of free fall
or

W = mg

Gravitational field strength
Here is another way to think about the signi"cance 
of g. !is quantity indicates how strong gravity is at a 
particular place. !e Earth’s gravitational "eld is stronger 
than the Moon’s. On the Earth’s surface, gravity gives an 
acceleration of free fall of about 9.81 m s−2. On the Moon, 
gravity is weaker; it only gives an acceleration of free 
fall of about 1.6 m s−2. So g indicates the strength of the 
gravitational "eld at a particular place:

g = gravitational "eld strength
and

weight = mass × gravitational "eld strength
(Gravitational "eld strength has units of N kg−1. !is unit 
is equivalent to m s−2.)

9 Estimate the mass and weight of each of the 
following at the surface of the Earth:
a a kilogram of potatoes
b this book
c an average student
d a mouse
e a 40-tonne truck.

 (For estimates, use g = 10 m s−2; 1 tonne = 1000 kg.)

Quantity Symbol Unit Comment
mass m kg this does not vary from place to 

place

weight mg N this a force – it depends on the 
strength of gravity

Table 3.4 Distinguishing between mass and weight.

QUESTION
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your push on the bicycle pedals, the force of the car engine, 
the push of your foot. Without the force, the moving object 
comes to a halt. So what conclusion might we draw?

A moving object needs a force to keep it moving.
! is might seem a sensible conclusion to draw, but it is 

wrong. We have not thought about all the forces involved. 
! e missing force is friction.

In each example above, friction (or air resistance) 
makes the object slow down and stop when there is no 
force pushing or pulling it forwards. For example, if you 
stop pedalling your cycle, air resistance will slow you 
down. ! ere is also friction at the axles of the wheels, and 
this too will slow you down. If you could lubricate your 
axles and cycle in a vacuum, you could travel along at a 
steady speed for ever, without pedalling!

In the 17th century, astronomers began to use 
telescopes to observe the night sky. ! ey saw that objects 
such as the planets could move freely through space. ! ey 
simply kept on moving, without anything providing a 
force to push them. Galileo came to the conclusion that 
this was the natural motion of objects.

 ■ An object at rest will stay at rest, unless a force causes it to 
start moving.

 ■ A moving object will continue to move at a steady speed in 
a straight line, unless a force acts on it.

So objects move with a constant velocity, unless a force 
acts on them. (Being stationary is simply a particular 
case of this, where the velocity is zero.) Nowadays it is 
much easier to appreciate this law of motion, because we 
have more experience of objects moving with little or 
no friction – roller-skates with low-friction bearings, ice 
skates, and spacecra$  in empty space. In Galileo’s day, 
people’s everyday experience was of dragging things along 
the ground, or pulling things on carts with high-friction 
axles. Before Galileo, the orthodox scienti" c idea was that 
a force must act all the time to keep an object moving – 
this had been handed down from the time of the ancient 
Greek philosopher Aristotle. So it was a great achievement 
when scientists were able to develop a picture of a world 
without friction.

The idea of inertia
! e tendency of a moving object to carry on moving is 
sometimes known as inertia.

 ■ An object with a large mass is di" icult to stop moving – think 
about catching a cricket ball, compared with a tennis ball.

 ■ Similarly, a stationary object with a large mass is di" icult to 
start moving – think about pushing a car to get it started.

 ■ It is di" icult to make a massive object change direction – 
think about the way a fully laden supermarket trolley tries 
to keep moving in a straight line.

Mass and inertia
It took a long time for scientists to develop correct ideas 
about forces and motion. We will start by thinking about 
some wrong ideas, and then consider why Galileo, Newton 
and others decided new ideas were needed.

Observations and ideas
Here are some observations to think about:

 ■ The large tree trunk shown in Figure 3.6 is being dragged 
from a forest. The elephant provides the force needed to 
pull it along. If the elephant stops pulling, the tree trunk will 
stop moving.

 ■ A horse is pulling a cart. If the horse stops pulling, the cart 
soon stops.

 ■ You are riding a bicycle. If you stop pedalling, the bicycle will 
come to a halt.

 ■ You are driving along the road. You must keep your foot 
on the accelerator pedal, otherwise the car will not keep 
moving.

 ■ You kick a football. The ball rolls along the ground and 
gradually stops.

In each of these cases, there is a force which makes 
something move – the pull of the elephant or the horse, 

Figure 3.5 The mass 
of a moon-buggy 
is the same on the 
Moon as on the 
Earth, but its weight 
is smaller.

Figure 3.6 An elephant provides the force needed to drag this 
tree from the forest. 
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But why can’t they go any faster? Why can’t a car driver 
keep pressing on the accelerator pedal, and simply go 
faster and faster?

To answer this, we have to think about the two forces 
mentioned above: air resistance and the forward thrust 
(force) of the engine. ! e vehicle will accelerate so long as 
the thrust is greater than the air resistance. When the two 
forces are equal, the resultant force on the vehicle is zero, 
and the vehicle moves at a steady velocity.

Balanced and unbalanced forces
If an object has two or more forces acting on it, we have to 
consider whether or not they are ‘balanced’ (Figure 3.8). 
Forces on an object are balanced when the resultant force 
on the object is zero. ! e object will either remain at rest 
or have a constant velocity.

We can calculate the resultant force by adding up two 
(or more) forces which act in the same straight line. We 
must take account of the direction of each force. In the 
examples in Figure 3.8, forces to the right are positive and 
forces to the le$  are negative.

When a car travels slowly, it encounters little air 
resistance. However, the faster it goes, the more air it has 
to push out of the way each second, and so the greater 

All of these examples suggest another way to think of an 
object’s mass; it is a measure of its inertia – how di)  cult 
it is to change the object’s motion. Uniform motion is 
the natural state of motion of an object. Here, uniform 
motion means ‘moving with constant velocity’ or ‘moving 
at a steady speed in a straight line’. Now we can summarise 
these " ndings as Newton’s ! rst law of motion.

An object will remain at rest or in a state of uniform 
motion unless it is acted on by a resultant force.

In fact, this is already contained in the simple equation 
we have been using to calculate acceleration, F = ma. If no 
resultant force acts on an object (F = 0), it will not accelerate 
(a = 0). ! e object will either remain stationary or it will 
continue to travel at a constant velocity. If we rewrite the 
equation as a = F

m 
, we can see that the greater the mass m, 

the smaller the acceleration a produced by a force F.

 10 Use the idea of inertia to explain why some large 
cars have power-assisted brakes.

 11 A car crashes head-on into a brick wall. Use the 
idea of inertia to explain why the driver is more 
likely to come out through the windscreen if he or 
she is not wearing a seat belt.

Top speed
! e vehicle shown in Figure 3.7 is capable of speeds as 
high as 760 mph, greater than the speed of sound. Its 
streamlined shape is designed to cut down air resistance 
and its jet engines provide a strong forward force to 
accelerate it up to top speed. All vehicles have a top speed. 

Two equal forces acting
in opposite directions
cancel each other out. 
We say they are balanced. 
The car will continue to
move at a steady velocity 
in a straight line.
    resultant force = 0 N

300 N
300 N

a

These two forces are 
unequal, so they do not
cancel out. They are 
unbalanced. The car will
accelerate.
    resultant force
         = 400 N – 300
         = 100 N to the right

400 N
300 N

b

Again the forces are 
unbalanced. This time,
the car will slow down or
decelerate.
    resultant force
         = 400 N – 300 N
         = 100 N to the le!

200 N
300 N

c
Figure 3.7 The Thrust SSC rocket car broke the world land-
speed record in 1997. It achieved a top speed of 763 mph (just 
over 340 m s−1) over a distance of 1 mile (1.6 km). Figure 3.8 Balanced and unbalanced forces. 

QUESTIONS
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so their terminal velocity is quite low. Insects can be swept 
up several kilometres into the atmosphere by rising air 
streams. Later, they fall back to Earth uninjured. It is said 
that mice can survive a fall from a high building for the 
same reason.

Moving through fluids
Air resistance is just one example of the resistive or 
viscous forces which objects experience when they move 
through a (uid – a liquid or a gas. If you have ever run 
down the beach and into the sea, or tried to wade quickly 
through the water of a swimming pool, you will have 
experienced the force of drag. !e deeper the water gets, 
the more it resists your movement and the harder you have 
to work to make progress through it. In deep water, it is 
easier to swim than to wade.

You can observe the e#ect of drag on a falling object if 
you drop a key or a coin into the deep end of a swimming 
pool. For the "rst few centimetres, it speeds up, but for the 
remainder of its fall, it has a steady speed. (If it fell through 
the same distance in air, it would accelerate all the way.) 
!e drag of water means that the falling object reaches its 
terminal velocity very soon a$er it is released. Compare 
this with a skydiver, who has to fall hundreds of metres 
before reaching terminal velocity.

Moving through air
We rarely experience drag in air. !is is because air is 
much less dense than water; its density is roughly 1

800 that 
of water. At typical walking speed, we do not notice the 
e#ects of drag. However, if you want to move faster, they 
can be important. Racing cyclists, like the one shown in 
Figure 3.11, wear tight-"tting clothing and streamlined 

the air resistance. Eventually the backward force of air 
resistance equals the forward force provided between the 
tyres and the road, and the forces on the car are balanced. 
It can go no faster – it has reached its top speed.

Free fall
Skydivers (Figure 3.9) are rather like cars – at "rst, they 
accelerate freely. At the start of the fall, the only force 
acting on the diver is his or her weight. !e acceleration of 
the diver at the start must therefore be g. !en increasing 
air resistance opposes their fall and their acceleration 
decreases. Eventually they reach a maximum velocity, 
known as the terminal velocity. At the terminal velocity 
the air resistance is equal to the weight. !e terminal 
velocity is approximately 120 miles per hour (about 
50 m s−1), but it depends on the diver’s weight and 
orientation. Head-"rst is fastest.

Ve
lo

ci
ty

Time0
0

Figure 3.9 A skydiver falling freely.

Figure 3.10 The velocity of a parachutist varies during a 
descent. The force arrows show weight (downwards) and air 
resistance (upwards).

!e idea of a parachute is to greatly increase the air 
resistance. !en terminal velocity is reduced, and the 
parachutist can land safely. Figure 3.10 shows how a 
parachutist’s velocity might change during descent.

Terminal velocity depends on the weight and surface 
area of the object. For insects, air resistance is much 
greater relative to their weight than for a human being and 

Figure 3.11 A racing cyclist adopts a posture which helps to 
reduce drag. Clothing, helmet and even the cycle itself are 
designed to allow them to go as fast as possible. 
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helmets. Other athletes may take advantage of the drag 
of air. !e runner in Figure 3.12 is undergoing resistance 
training. !e parachute provides a backward force against 
which his muscles must work. !is should help to develop 
his muscles.

Figure 3.12 A runner making use of air resistance to build up 
his muscles.

 12 If you drop a large stone and a small stone from 
the top of a tall building, which one will reach the 
ground first? Explain your answer.

 13 In a race, downhill skiers want to travel as quickly 
as possible. They are always looking for ways to 
increase their top speed. Explain how they might 
do this. Think about:
a their skis
b their clothing
c their muscles
d the slope.

 14 Skydivers jump from a plane at intervals of a few 
seconds. If two divers wish to join up as they fall, 
the second must catch up with the first.
a If one diver is more massive than the other, 

which should jump first? Use the idea of forces 
and terminal velocity to explain your answer.

b If both divers are equally massive, suggest 
what the second might do to catch up with 
the first.

5 A car of mass 500 kg is travelling along a flat road. 
The forward force provided between the car tyres 
and the road is 300 N and the air resistance is 200 N. 
Calculate the acceleration of the car.

 Step 1 Start by drawing a diagram of the car, 
showing the forces mentioned in the question 
(Figure 3.13). Calculate the resultant force on the car; 
the force to the right is taken as positive:
resultant force = 300 − 200 = 100 N

 Step 2 Now use F =  ma to calculate the car’s 
acceleration:

a =  
F
m 

 =  
100
500 

 =  0.20 m s−2

 So the car’s acceleration is 0.20 m s−2.

6 The maximum forward force a car can provide 
is 500 N. The air resistance F which the car 
experiences depends on its speed according to  
F = 0.2v  2, where v is the speed in m s−1. Determine 
the top speed of the car.

 Step 1 From the equation F = 0.2v  2, you can see 
that the air resistance increases as the car goes 
faster. Top speed is reached when the forward 
force equals the air resistance. So, at top speed:
500 = 0.2v 2

 Step 2 Rearranging gives:

 v2 =  
500
0.2   = 2500

 v = 50 m s−1

 So the car’s top speed is 50 m s−1 (this is about 
180 km h−1).

300 N
200 N

Figure 3.13 The forces on an accelerating car.

QUESTIONS

WORKED EXAMPLES



Chapter 3: Dynamics – explaining motion

47

Diagram Force Important situations
Pushes and pulls. You can make an object accelerate by pushing and 
pulling it. Your force is shown by an arrow pushing (or pulling) the object.

The engine of a car provides a force to push backwards on the road. 
Frictional forces from the road on the tyre push the car forwards.

 ■ pushing and pulling
 ■ li$ing
 ■ force of car engine
 ■ attraction and 

repulsion by magnets 
and by electric 
charges

Weight. This is the force of gravity acting on the object. It is usually shown 
by an arrow pointing vertically downwards from the object’s centre of 
gravity.

 ■ any object in a 
gravitational field

 ■ less on the Moon

Friction. This is the force which arises when two surfaces rub over one another. 
If an object is sliding along the ground, friction acts in the opposite direction to 
its motion. If an object is stationary, but tending to slide – perhaps because it is 
on a slope – the force of friction acts up the slope to stop it from sliding down. 
Friction always acts along a surface, never at an angle to it.

 ■ pulling an object 
along the ground

 ■ vehicles cornering or 
skidding

 ■ sliding down a slope

Drag. This force is similar to friction. When an object moves through air, 
there is friction between it and the air. Also, the object has to push aside 
the air as it moves along. Together, these e!ects make up drag.

Similarly, when an object moves through a liquid, it experiences a drag 
force.

Drag acts to oppose the motion of an object; it acts in the opposite 
direction to the object’s velocity. It can be reduced by giving the object a 
streamlined shape.

 ■ vehicles moving 
 ■ aircra$ flying
 ■ parachuting
 ■ objects falling 

through air or water
 ■ ships sailing

Upthrust. Any object placed in a fluid such as water or air experiences 
an upwards force. This is what makes it possible for something to float in 
water.

Upthrust arises from the pressure which a fluid exerts on an object. 
The deeper you go, the greater the pressure. So there is more pressure on 
the lower surface of an object than on the upper surface, and this tends to 
push it upwards. If upthrust is greater than the object’s weight, it will float 
up to the surface.

 ■ boats and icebergs 
floating

 ■ people swimming
 ■ divers surfacing
 ■ a hot air balloon 

rising

Contact force. When you stand on the floor or sit on a chair, there is 
usually a force which pushes up against your weight, and which supports 
you so that you do not fall down. The contact force is sometimes known 
as the normal reaction of the floor or chair. (In this context, normal means 
‘perpendicular’.) 

The contact force always acts at right angles to the surface which 
produces it. The floor pushes straight upwards; if you lean against a wall, it 
pushes back against you horizontally.

 ■  standing on the 
ground

 ■ one object sitting on 
top of another

 ■ leaning against a wall
 ■ one object bouncing 

o! another

Tension. This is the force in a rope or string when it is stretched. If you pull 
on the ends of a string, it tends to stretch. The tension in the string pulls 
back against you. It tries to shorten the string.

Tension can also act in springs. If you stretch a spring, the tension pulls 
back to try to shorten the spring. If you squash (compress) the spring, the 
tension acts to expand the spring.

 ■ pulling with a rope
 ■ squashing or 

stretching a spring

Figure 3.14 Some important forces. 

Identifying forces
It is important to be able to identify the forces which act on an object. When we 
know what forces are acting, we can predict how it will move. Figure 3.14 shows 
some important forces, how they arise, and how we represent them in diagrams.

push pull

forward 
push on 
car

backward push
on road

weight

pull
friction

friction

drag

weight

upthrust
weight

upthrust

contact
force

contact
forces

tension
tension
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it is low. Molecules hit the top surface of the ball pushing 
down, but only a few more molecules push upwards on 
the bottom of the ball, so the resultant force upwards, or 
the upthrust is low. If the ball is falling, air resistance is 
greater than this small upthrust but both these forces are 
acting upwards on the ball.

Contact forces and upthrust
We will now think about the forces which act when two 
objects are in contact with each other. When two objects 
touch each other, each exerts a force on the other. !ese 
are called contact forces. For example, when you stand on 
the (oor (Figure 3.15), your feet push downwards on the 
(oor and the (oor pushes back upwards on your feet. !is 
is a vital force – the upward push of the (oor prevents you 
from falling downwards under the pull of your weight.

 15 Name these forces:
a the upward push of water on a submerged 

object
b the force which wears away two surfaces as 

they move over one another
c the force which pulled the apple o" Isaac 

Newton’s tree
d the force which stops you falling through the 

floor
e the force in a string which is holding up an 

apple
f the force which makes it di"icult to run 

through shallow water.

 16 Draw a diagram to show the forces which act 
on a car as it travels along a level road at its top 
speed.

 17 Imagine throwing a shuttlecock straight up 
in the air. Air resistance is more important for 
shuttlecocks than for a tennis ball. Air resistance 
always acts in the opposite direction to the 
velocity of an object.

  Draw diagrams to show the two forces, weight 
and air resistance, acting on the shuttlecock:
a as it moves upwards
b as it falls back downwards.

Where do these contact forces come from? When you 
stand on the (oor, the (oor becomes slightly compressed. 
Its atoms are pushed slightly closer together, and the 
interatomic forces push back against the compressing 
force. At the same time, the atoms in your feet are also 
pushed together so that they push back in the opposite 
direction. (It is hard to see the compression of the (oor 
when you stand on it, but if you stand on a so$ material 
such as foam rubber or a mattress you will be able to see 
the compression clearly.)

You can see from Figure 3.15 that the two contact 
forces act in opposite directions. !ey are also equal in 
magnitude. As we will see shortly, this is a consequence of 
Newton’s third law of motion.

When an object is immersed in a (uid (a liquid or a 
gas), it experiences an upward force called upthrust. It is 
the upthrust of water which keeps a boat (oating (Figure 
3.16) and the upthrust of air which li$s a hot air balloon 
upwards.

!e upthrust of water on a boat can be thought of as 
the contact force of the water on the boat. It is caused by 
the pressure of the water pushing upwards on the boat. 
Pressure arises from the motion of the water molecules 
colliding with the boat and the net e#ect of all these 
collisions is an upward force.

An object in air, such as a ball, has a very small 
upthrust acting on it, because the density of the air around 

contact force 
of floor on foot

contact force 
of foot on floor

Figure 3.15 Equal and opposite contact forces act when you 
stand on the floor.

upthrust of water
on boat

weight of boat

Figure 3.16 Without su"icient upthrust from the water, the 
boat would sink.

QUESTIONS
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Newton’s third law of motion
For completeness, we should now consider Newton’s third 
law of motion. (!ere is more about this in Chapter 6.)

When two objects interact, each exerts a force on the 
other. Newton’s third law says that these forces are equal 
and opposite to each other:

When two bodies interact, the forces they exert on each 
other are equal in magnitude and opposite in direction.

(!ese two forces are sometimes described as action and 
reaction, but this is misleading as it sounds as though one 
force arises as a consequence of the other. In fact, the two 
forces appear at the same time and we can’t say that one 
caused the other.)

!e two forces which make up a ‘Newton’s third law 
pair’ have the following characteristics:

 ■ They act on di#erent objects.
 ■ They are equal in magnitude.
 ■ They are opposite in direction.
 ■ They are forces of the same type.

What does it mean to say that the forces are ‘of the same 
type’? We need to think about the type of interaction 
which causes the forces to appear.

 ■ Two objects may attract each other because of the gravity 
of their masses – these are gravitational forces.

 ■ Two objects may attract or repel because of their electrical 
charges – electrical forces.

 ■ Two objects may touch – contact forces.
 ■ Two objects may be attached by a string and pull on each 

other – tension forces.
 ■ Two objects may attract or repel because of their magnetic 

fields – magnetic forces.

Figure 3.17 shows a person standing on the Earth’s surface. 
!e two gravitational forces are a Newton’s third law pair, 
as are the two contact forces. Don’t be misled into thinking 
that the person’s weight and the contact force of the (oor 
are a Newton’s third law pair. Although they are ‘equal and 
opposite’, they do not act on di#erent objects and they are 
not of the same type.

gravitational force
(Earth on man)

contact force 
(Earth on man)

contact force
(man on Earth)

gravitational force 
(man on Earth)

Figure 3.17 For each of the forces that the Earth exerts on 
you, an equal and opposite force acts on the Earth. 

 18 Describe one ‘Newton’s third law pair’ of forces 
involved in the following situations. In each case, 
state the object that each force acts on, the type 
of force and the direction of the force.
a You step on someone’s toe.
b A car hits a brick wall and comes to rest.
c A car slows down by applying the brakes.
d You throw a ball upwards into the air.

QUESTION
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Summary
 ■ An object will remain at rest or in a state of uniform 

motion unless it is acted on by an external force. This 
is Newton’s first law of motion.

 ■ For a body of constant mass, the acceleration is 
directly proportional to the resultant force applied to 
it. Resultant force F, mass m and acceleration a are 
related by the equation:

resultant force = mass × acceleration

F = ma

This is a form of Newton’s second law of motion.

 ■ When two bodies interact, the forces they exert on 
each other are equal in magnitude and opposite in 
direction.  
This is Newton’s third law of motion.

 ■ The acceleration produced by a force is in the same 
direction as the force. Where there are two or more 
forces, we must determine the resultant force.

 ■ A newton (N) is the force required to give a mass of 
1 kg an acceleration of 1 m s−2 in the direction of the 
force.

 ■ The greater the mass of an object, the more it resists 
changes in its motion. Mass is a measure of the 
object’s inertia.

 ■ The weight of an object is a result of the pull of gravity 
on it:

weight = mass × acceleration of free fall (W = mg)

weight = mass × gravitational field strength

 ■ An object falling freely under gravity has a constant 
acceleration provided the gravitational field strength 
is constant. However, fluid resistance (such as air 
resistance) reduces its acceleration. Terminal velocity 
is reached when the fluid resistance is equal to the 
weight of the object.
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End-of-chapter questions
1 When a golfer hits a ball his club is in contact with the ball for about 0.0005 s and the ball leaves the club 

with a speed of 70 m s−1. The mass of the ball is 46 g.
a Determine the mean accelerating force. [4]
b What mass, resting on the ball, would exert the same force as in a? [2]

2 The mass of a spacecra#  is 70 kg. As the spacecra#  takes o"  from the Moon, the upwards force on the spacecra#  
caused by the engines is 500 N. The gravitational field strength on the Moon is 1.6 N kg−1.

 Determine:
a the weight of the spacecra#  on the Moon [2]
b the resultant force on the spacecra#  [2]
c the acceleration of the spacecra# . [2]

3 A metal ball is dropped into a tall cylinder of oil. The ball initially accelerates but soon reaches a terminal velocity.
a By considering the forces on the metal ball bearing, explain why it first accelerates but then reaches 

terminal velocity. [3]
b Describe how you would show that the metal ball reaches terminal velocity. [3]

4 Determine the speed in m s−1 of an object that travels:
a 3 µm in 5 ms [2]
b 6 km in 3 Ms [2]
c 8 pm in 4 ns. [2]

5 Figure 3.18 shows a man who is just supporting the weight of a box. Two of the forces acting are shown 
in the diagram. According to Newton’s third law, each of these forces is paired with another force.

Figure 3.18 For End-of-chapter Question 5. 

 For a the weight of the box and b the force of the ground on the man, state:
i the body that the other force acts upon [2]
ii the direction of the other force [2]
iii the type of force involved. [2]

20 kg

weight of box

force of
ground on
man
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 6 A car starts to move along a straight, level road. For the first 10 s, the driver maintains a constant 
acceleration of 1.5 m s−2. The mass of the car is 1.1 × 103 kg.
a Calculate the driving force provided by the wheels, when:

i the force opposing motion is negligible [1]
ii the total force opposing the motion of the car is 600 N. [1]

b Calculate the distance travelled by the car in the first 10 s. [2]

 7 Figure 3.19 shows the speed–time graphs for two falling balls.

Figure 3.19 For End-of-chapter Question 7.

a Determine the terminal velocity of the plastic ball. [1]
b Both balls are of the same size and shape but the metal ball has a greater mass. Explain, in terms 

of Newton’s laws of motion and the forces involved, why the plastic ball reaches a constant 
velocity but the metal ball does not. [3]

c Explain why both balls have the same initial acceleration. [2]

 8 A car of mass 1200 kg accelerates from rest to a speed of 8.0 m s−1 in a time of 2.0 s.
a Calculate the forward driving force acting on the car while it is accelerating. Assume that, at 

low speeds, all frictional forces are negligible. [2]
b At high speeds the resistive frictional force F produced by air on a body moving with velocity v is given 

by the equation F = bv 2, where b is a constant.
i Derive the base units of force in the SI system. [1]
ii Determine the base units of b in the SI system. [1]
iii The car continues with the same forward driving force and accelerates until it reaches a top speed 

of 50 m s−1. At this speed the resistive force is given by the equation F = bv 2. Determine the value 
of b for the car. [2]

iv Sketch a graph showing how the value of F  varies with v over the range 0 to 50 m s−1. Use your 
graph to describe what happens to the acceleration of the car during this time. [2]

 9 a  Explain what is meant by the mass of a body and the weight of a body. [3]
b State and explain one situation in which the weight of a body changes while its mass remains constant. [2]
c State the di" erence between the base units of mass and weight in the SI system. [2]

 10 a State Newton’s second law of motion. [2]
b When you jump from a wall on to the ground, it is advisable to bend your knees on landing.

i State how bending your knees a" ects the time it takes to stop when hitting the ground. [1]
ii Using Newton’s second law of motion, explain why it is sensible to bend your knees.  [2]
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Chapter 4:
Forces – vectors 
and moments

Learning outcomes
You should be able to:

 ■ add two or more coplanar forces
 ■ resolve a force into perpendicular components
 ■ define and apply the moment of a force and the torque of 

a couple
 ■ apply the principle of moments
 ■ state the conditions for a body to be in equilibrium
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Sailing ahead
Force is a vector quantity. Sailors know a lot about the 
vector nature of forces. For example, they can sail ‘into 
the wind’. The sails of a yacht can be angled to provide 
a component of force in the forward direction and 
the boat can then sail at almost 45º to the wind. The 
boat tends to ‘heel over’ and the crew sit on the side 
of the boat to provide a turning e# ect in the opposite 
direction (Figure 4.1).

! e combined e# ect of several forces is known as the 
resultant force. To see how to work out the resultant of 
two or more forces, we will start with a relatively simple 
example.

Two forces in a straight line
We saw some examples in Chapter 3 of two forces acting 
in a straight line. For example, a falling tennis ball may be 
acted on by two forces: its weight mg, downwards, and 
air resistance D, upwards (Figure 4.3). ! e resultant force 
is then:

resultant force = mg − D = 1.0 − 0.2 = 0.8 N
When adding two or more forces which act in a straight 
line, we have to take account of their directions. A force 
may be positive or negative; we adopt a sign convention to 
help us decide which is which.

If you apply a sign convention correctly, the sign of 
your " nal answer will tell you the direction of the resultant 
force (and hence acceleration).

Combining forces
You should recall that a vector quantity has both 
magnitude and direction. An object may have two or more 
forces acting on it and, since these are vectors, we must use 
vector addition (Chapter 1) to " nd their combined e# ect 
(their resultant).

! ere are several forces acting on the car (Figure 4.2) as 
it struggles up the steep hill. ! ey are:

 ■ its weight W (= mg)
 ■ the contact force N of the road (its normal reaction)
 ■ air resistance D
 ■ the forward force F caused by friction between the car tyres 

and the road.

If we knew the magnitude and direction of each of these 
forces, we could work out their combined e# ect on the car. 
Will it accelerate up the hill? Or will it slide backwards 
down the hill? 

Figure 4.1 Sailing into the wind.

D

F
N

W

Figure 4.2 Four forces act on this car as it moves uphill. 

mg = 1.0 N

positive
direction

D = 0.2 N

Figure 4.3 Two forces on a falling tennis ball.
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Two forces at right angles
Figure 4.4 shows a shuttlecock falling on a windy day. 
!ere are two forces acting on the shuttlecock: its weight 
vertically downwards, and the horizontal push of the wind. 
(It helps if you draw the force arrows of di#erent lengths, to 
show which force is greater.) We must add these two forces 
together to "nd the resultant force acting on the shuttlecock.

If you draw a scale drawing be careful to:

 ■ state the scale used
 ■ draw a large diagram to reduce the uncertainty.

Three or more forces
!e spider shown in Figure 4.5 is hanging by a thread. It is 
blown sideways by the wind. !e diagram shows the three 
forces acting on it:

 ■ weight acting downwards
 ■ the tension in the thread
 ■ the push of the wind.

!e diagram also shows how these can be added together. 
In this case, we arrive at an interesting result. Arrows are 
drawn to represent each of the three forces, end-to-end. 
!e end of the third arrow coincides with the start of the 
"rst arrow, so the three arrows form a closed triangle. !is 
tells us that the resultant force R on the spider is zero, that 
is, R = 0. !e closed triangle in Figure 4.5 is known as a 
triangle of forces.

So there is no resultant force. !e forces on the spider 
balance each other out, and we say that the spider is in 
equilibrium. If the wind blew a little harder, there would 
be an unbalanced force on the spider, and it would move 
o# to the right.

We can use this idea in two ways:
 ■ If we work out the resultant force on an object and find that 

it is zero, this tells us that the object is in equilibrium.
 ■ If we know that an object is in equilibrium, we know that the 

forces on it must add up to zero. We can use this to work out 
the values of one or more unknown forces.

6.0 N

8.0 N

6.0 N

8.0 N
R

Direction
of travel θ

Figure 4.4 Two forces act on this shuttlecock as it travels 
through the air; the vector triangle shows how to find the 
resultant force.

push of wind

weight

tension

triangle of forces

tension in
thread

push of wind

weight

θ

Figure 4.5 Blowing in the wind – this spider is hanging in 
equilibrium. 

We add the forces by drawing two arrows, end-to-end, 
as shown on the right of Figure 4.4.

 ■ First, a horizontal arrow is drawn to represent the 6.0 N push 
of the wind.

 ■ Next, starting from the end of this arrow, we draw a second 
arrow, downwards, representing the weight of 8.0 N.

 ■ Now we draw a line from the start of the first arrow to 
the end of the second arrow. This arrow represents the 
resultant force R, in both magnitude and direction.

!e arrows are added by drawing them end-to-end; the 
end of the "rst arrow is the start of the second arrow. Now 
we can "nd the resultant force either by scale drawing or 
by calculation. In this case, we have a 3–4–5 right-angled 
triangle, so calculation is simple:

 R2 = 6.02 + 8.02 = 36 + 64 = 100

 R = 10 N

 tan θ = opp
adj

 = 8.0
6.0

 = 4
3

 θ = tan−1 4
3

 ≈ 53°

So the resultant force is 10 N, at an angle of 53° below 
the horizontal. !is is a reasonable answer; the weight 
is pulling the shuttlecock downwards and the wind is 
pushing it to the right. !e angle is greater than 45° because 
the downward force is greater than the horizontal force.
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Components of vectors
Look back to Figure 4.5. !e spider is in equilibrium, even 
though three forces are acting on it. We can think of the 
tension in the thread as having two e#ects:

 ■ it is pulling upwards, to counteract the downward e"ect of 
gravity

 ■ it is pulling to the le#, to counteract the e"ect of the wind.

We can say that this force has two e#ects or components: 
an upwards (vertical) component and a sideways 
(horizontal) component. It is o$en useful to split up a 
vector quantity into components like this, just as we did 
with velocity in Chapter 2. !e components are in two 
directions at right angles to each other, o$en horizontal 
and vertical. !e process is called resolving the vector. 
!en we can think about the e#ects of each component 
separately; we say that the perpendicular components are 
independent of one another. Because the two components 
are at 90° to each other, a change in one will have no e#ect 
on the other. Figure 4.8 shows how to resolve a force F into 
its horizontal and vertical components. !ese are:

horizontal component of F, Fx = F cos  θ

vertical component of F, Fy = F sin  θ

1 A parachutist weighs 1000 N. When she opens her 
parachute, it pulls upwards on her with a force of 
2000 N.
a Draw a diagram to show the forces acting on 

the parachutist.
b Calculate the resultant force acting on her.
c What e"ect will this force have on her?

2 The ship shown in Figure 4.6 is travelling at a 
constant velocity.
a Is the ship in equilibrium (in other words, is the 

resultant force on the ship equal to zero)? How 
do you know?

b What is the upthrust U of the water?
c What is the drag D of the water?

3 A stone is dropped into a fast-flowing stream. It 
does not fall vertically, because of the sideways 
push of the water (Figure 4.7).
a Calculate the resultant force on the stone.
b Is the stone in equilibrium?

weight W = 1000 kN

upthrust U

drag D

force of
engines
F = 50 kN

weight W = 2.5 N

upthrust U = 0.5 N

push of water
F = 1.5 N

Figure 4.6 For Question 2. The force D is the 
frictional drag of the water on the boat. Like air 
resistance, drag is always in the opposite direction to 
the object’s motion. 

Figure 4.7 For Question 3.

Fy = F sin θ 

Fx = F cos θ  

x

y

F

θ

Making use of components
When the trolley shown in Figure 4.9 is released, it 
accelerates down the ramp. !is happens because of the 
weight of the trolley. !e weight acts vertically downwards, 
although this by itself does not determine the resulting 
motion. However, the weight has a component which 
acts down the slope. By calculating the component of 
the trolley’s weight down the slope, we can determine its 
acceleration.

Figure 4.10 shows the forces acting on the trolley. To 
simplify the situation, we will assume there is no friction. 
!e forces are:

 ■ W, the weight of the trolley, which acts vertically downwards
 ■ N, the contact force of the ramp, which acts at right angles 

to the ramp.

Figure 4.8 Resolving a vector into two components at right 
angles. 

QUESTIONS
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Does the contact force N help to accelerate the trolley 
down the ramp? To answer this, we must calculate its 
component down the slope. !e angle between N and the 
slope is 90°. So:

component of N down the slope = N cos 90° = 0
!e cosine of 90° is zero, and so N has no component 
down the slope. !is shows why it is useful to think in 
terms of the components of forces; we don’t know the 
value of N, but, since it has no e#ect down the slope, we 
can ignore it.

(!ere’s no surprise about this result. !e trolley runs 
down the slope because of the in(uence of its weight, not 
because it is pushed by the contact force N.)

Changing the slope
If the students in Figure 4.9 increase the slope of their 
ramp, the trolley will move down the ramp with greater 
acceleration. !ey have increased θ, and so the component 
of W down the slope will have increased.

Now we can work out the trolley’s acceleration. If the 
trolley’s mass is m, its weight is mg. So the force F making 
it accelerate down the slope is:

F = mg sin θ
Since from Newton’s second law for constant mass we 

have a = F
m, the trolley’s acceleration a is given by:

a = mg sin θ
m  = g sin θ

We could have arrived at this result simply by saying that 
the trolley’s acceleration would be the component of g 
down the slope (Figure 4.11). !e steeper the slope, the 
greater the value of sin θ, and hence the greater the trolley’s 
acceleration.

You can see at once from the diagram that the forces 
cannot be balanced, since they do not act in the same 
straight line.

To "nd the component of W down the slope, we need 
to know the angle between W and the slope. !e slope 
makes an angle θ with the horizontal, and from the 
diagram we can see that the angle between the weight and 
the ramp is (90° −  θ). Using the rule for calculating the 
component of a vector given above, we have:

component of W down the slope = W cos (90° − θ )  
 = W sin  θ

(It is helpful to recall that cos (90° − θ ) = sin  θ; you can see 
this from Figure 4.10.)

Figure 4.9 These students are investigating the acceleration 
of a trolley down a sloping ramp. 

N

W

(90° – θ )

trolley

ramp

θ

component down
slope = g sin θ 

ramp

(90 – θ)

g

θ

Figure 4.10 A force diagram for a trolley on a ramp.

Figure 4.11 Resolving g down the ramp. 
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4 The person in Figure 4.12 is pulling a large box 
using a rope. Use the idea of components of a 
force to explain why they are more likely to get the 
box to move if the rope is horizontal (as in a) than 
if it is sloping upwards (as in b).

6 A child of mass 40 kg is on a water slide. The 
slide slopes down at 25° to the horizontal. The 
acceleration of free fall is 9.81 m s−2. Calculate the 
child’s acceleration down the slope:
a when there is no friction and the only force 

acting on the child is his weight
b if a frictional force of 80 N acts up the slope.

5 A crate is sliding down a slope. The weight of the 
crate is 500 N. The slope makes an angle of 30° with 
the horizontal.
a Draw a diagram to show the situation. Include 

arrows to represent the weight of the crate  
and the contact force of the slope acting on  
the crate.

b Calculate the component of the weight down 
the slope.

c Explain why the contact force of the slope has 
no component down the slope.

d What third force might act to oppose the 
motion? In which direction would it act?

Solving problems by resolving forces
A force can be resolved into two components at 
right angles to each other; these can then be treated 
independently of one another. !is idea can be used to 
solve problems, as illustrated in Worked example 1.

a b

Figure 4.12 Why is it easier to move the box with the 
rope horizontal? See Question 4. 

1 A boy of mass 40 kg is on a waterslide which slopes 
at 30° to the horizontal. The frictional force up the 
slope is 120 N. Calculate the boy’s acceleration down 
the slope. Take the acceleration of free fall g to be 
9.81 m s−2.

 Step 1 Draw a labelled diagram showing all the 
forces acting on the object of interest (Figure 4.13). 
This is known as a free-body force diagram. The 
forces are:
the boy’s weight W =  40 × 9.81 = 392 N
the frictional force up the slope F = 120 N
the contact force N at 90° to the slope.

 Step 2 We are trying to find the resultant force on 
the boy which makes him accelerate down the slope. 
We resolve the forces down the slope, i.e. we find 
their components in that direction.
component of W down the slope = 392 × cos 60°  
 = 196 N
component of F down the slope = −120 N 
(negative because F is directed up the slope)
component of N down the slope = 0 
(because it is at 90° to the slope)

 It is convenient that N has no component down the 
slope, since we do not know the value of N.

 Step 3 Calculate the resultant force on the boy: 

 resultant force = 196 − 120 = 76 N

 Step 4 Calculate his acceleration:

acceleration =  
resultant force

mass   =  
76
40  = 1.9 ms−2

 So the boy’s acceleration down the slope is 1.9 m s−2. 
We could have arrived at the same result by resolving 
vertically and horizontally, but that would have led 
to two simultaneous equations from which we would 
have had to eliminate the unknown force N. It o#en 
helps to resolve forces at 90° to an unknown force.

N F

W30°

Figure 4.13 For Worked example 1. 

QUESTIONS

QUESTION

WORKED EXAMPLE
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Centre of gravity
We have weight because of the force of gravity of the 
Earth on us. Each part of our body – arms, legs, head, 
for example – experiences a force, caused by the force of 
gravity. However, it is much simpler to picture the overall 
e#ect of gravity as acting at a single point. !is is our 
centre of gravity.

The centre of gravity of an object is defined as the point 
where all the weight of the object may be considered  
to act.

For a person standing upright, the centre of gravity is 
roughly in the middle of the body, behind the navel. 
For a sphere, it is at the centre. It is much easier to solve 
problems if we simply indicate an object’s weight by a 
single force acting at the centre of gravity, rather than a 
large number of forces acting on each part of the object. 
Figure 4.14 illustrates this point. !e athlete performs a 
complicated manoeuvre. However, we can see that his 
centre of gravity follows a smooth, parabolic path through 
the air, just like the paths of projectiles we discussed in 
Chapter 2.

Figure 4.14 The dots indicate the athlete’s centre of gravity, 
which follows a smooth trajectory through the air. With his 
body curved like this, the athlete’s centre of gravity is actually 
outside his body, just below the small of his back. At no time is 
the whole of his body above the bar. 

BOX 4.1: Finding the centre of gravity

The centre of gravity of a thin sheet, or lamina, of 
cardboard or metal can be found by suspending it 
freely from two or three points (Figure 4.15).

Small holes are made round the edge of the 
irregularly shaped object. A pin is put through one 
of the holes and held firmly in a clamp and stand 
so the object can swing freely. A length of string is 
attached to the pin. The other end of the string has 
a heavy mass attached to it. This arrangement is 
called a plumb line.

The object will stop swinging when its centre of 
gravity is vertically below the point of suspension. A 
line is drawn on the object along the vertical string 
of the plumb line. The centre of gravity must lie on 
this line. To find the position of the centre of gravity, 
the process is repeated with the object suspended 
from di"erent holes. The centre of gravity will be at 
the point of intersection of the lines drawn on the 
object.

plumb line

irregular object

plumb line suspended
from pin

Figure 4.15 The centre of gravity is located at the 
intersection of the lines.

The turning e!ect of a force
Forces can make things accelerate. !ey can do something 
else as well: they can make an object turn round. We say 
that they can have a turning e#ect. Figure 4.16 shows how 
to use a spanner to turn a nut.

To maximise the turning e#ect of his force, the 
operator pulls close to the end of the spanner, as far as 
possible from the pivot (the centre of the nut) and at 90º to 
the spanner.
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Figure 4.17b shows a slightly more complicated 
situation. F2 is pushing at an angle θ to the lever, rather 
than at 90°. !is makes it have less turning e#ect. !ere 
are two ways to calculate the moment of the force.

Method 1
Draw a perpendicular line from the pivot to the line of the 
force. Find the distance x2. Calculate the moment of the 
force, F2 ×  x2. From the right-angled triangle, we can see 
that:

x2 = d sin θ
Hence:

moment of force = F2 × d sin θ  = F2d sin θ

Method 2
Calculate the component of F2 which is at 90° to the lever. 
!is is F2 sin θ. Multiply this by d.

moment = F2 sin θ  × d
We get the same result as Method 1:

moment of force = F2d sin θ
Note that any force (such as the component F2 cos θ ) which 
passes through the pivot has no turning e#ect, because the 
distance from the pivot to the line of the force is zero.

Note also that we can calculate the moment of a force 
about any point, not just the pivot. However, in solving 
problems, it is o$en most convenient to take moments 
about the pivot as there is o$en an unknown force acting 
through the pivot (its contact force on the object).

Balanced or unbalanced?
We can use the idea of the moment of a force to solve two 
sorts of problem:

 ■ We can check whether an object will remain balanced or 
start to rotate.

 ■ We can calculate an unknown force or distance if we know 
that an object is balanced.

We can use the principle of moments to solve problems. 
!e principle of moments states that:

For any object that is in equilibrium, the sum of the 
clockwise moments about any point provided by 
the forces acting on the object equals the sum of the 
anticlockwise moments about that same point.

Note that, for an object to be in equilibrium, we also 
require that no resultant force acts on it. !e Worked 
examples that follow illustrate how we can use these ideas 
to determine unknown forces.

Moment of a force
!e quantity which tells us about the turning e#ect of a 
force is its moment. !e moment of a force depends on 
two quantities:

 ■ the magnitude of the force (the bigger the force, the greater 
its moment)

 ■ the perpendicular distance of the force from the pivot (the 
further the force acts from the pivot, the greater its moment).

!e moment of a force is de"ned as follows:

The moment of a force = force × perpendicular distance of  
 the pivot from the line of action of the force.

Figure 4.17a shows these quantities. !e force F1 is pushing 
down on the lever, at a perpendicular distance x1 from the 
pivot. !e moment of the force F1 about the pivot is then 
given by:

moment = force × distance from pivot

 = F1 ×  x1

!e unit of moment is the newton metre (N m). !is is 
a unit which does not have a special name. You can also 
determine the moment of a force in N cm.

x2

F2

F1

x1

a b

d

θ

Figure 4.16 A mechanic turns a nut. 

Figure 4.17 The quantities involved in calculating the 
moment of a force.
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2 Is the see-saw shown in Figure 4.18 in equilibrium 
(balanced), or will it start to rotate?

 The see-saw will remain balanced, because the 20 N 
force is twice as far from the pivot as the 40 N force.

 To prove this, we need to think about each force 
individually. Which direction is each force trying to turn 
the see-saw, clockwise or anticlockwise? The 20 N force 
is tending to turn the see-saw anticlockwise, while the 
40 N force is tending to turn it clockwise.

 Step 1 Determine the anticlockwise moment:
moment of anticlockwise force = 20 × 2.0  =  40 N m

 Step 2 Determine the clockwise moment:
moment of clockwise force = 40 × 1.0  =  40 N m

 Step 3 We can see that:
clockwise moment = anticlockwise moment

 So the see-saw is balanced and therefore does not 
rotate. The see-saw is in equilibrium.

3 The beam shown in Figure 4.19 is in equilibrium. 
Determine the force X.

 The unknown force X is tending to turn the beam 
anticlockwise. The other two forces (10 N and 20 N) are 
tending to turn the beam clockwise. We will start by 
calculating their moments and adding them together.

 Step 1 Determine the clockwise moments:
sum of moments of clockwise forces  
 =  (10 × 1.0) + (20 ×  0.5)
 =  10 + 10  =  20 N m

 Step 2 Determine the anticlockwise moment:
moment of anticlockwise force = X  × 0.8

 Step 3 Since we know that the beam must be balanced, 
we can write:
sum of clockwise moments  
 =  sum of anticlockwise moments
 20  =  X  × 0.8

 X  =  
20
0.8  =  25 N

 So a force of 25 N at a distance of 0.8 m from the pivot 
will keep the beam still and prevent it from rotating 
(keep it balanced).

4 Figure 4.20 shows the internal structure of a human arm 
holding an object. The biceps are muscles attached to 
one of the bones of the forearm. These muscles provide 
an upward force.

 An object of weight 50 N is held in the hand with the 
forearm at right angles to the upper arm. Use the  
principle of moments to determine the muscular force  
F provided by the biceps, given the following data:
weight of forearm = 15 N
distance of biceps from elbow =  4.0 cm
distance of centre of gravity  
 of forearm from elbow = 16 cm
distance of object in the hand from elbow = 35 cm

 Step 1 There is a lot of information in this question.  
It is best to draw a simplified diagram of the forearm 
that shows all the forces and the relevant distances 
(Figure 4.21). All distances must be from the pivot, which 
in this case is the elbow.

2.0 m 1.0 m

20 N
40 Npivot

1.0 m0.5 m

X pivot 10 N

20 N

0.8 m

biceps

35 cm

4.0 cm

Figure 4.18 Will these forces make the see-saw rotate, 
or are their moments balanced?

Figure 4.19 For Worked example 3.

Figure 4.20 The human arm. For Worked example 4.
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 Step 2 Determine the clockwise moments:
sum of moments of clockwise forces  
 = (15 × 0.16) + (50 × 0.35)
 = 19.9 N m

 Step 3 Determine the anticlockwise moment:
moment of anticlockwise force = F × 0.04

 Step 4 Since the arm is in balance, according to the 
principle of moments we have:
sum of clockwise moments  
 = sum of anticlockwise moments
19.9 = 0.04 F

F  =  
19.9
0.04  =  497.5 N ≈ 500 N

 The biceps provide a force of 500 N – a force large 
enough to li# 500 apples!

F

15 N

arm

elbow

4.0 cm

16 cm

35 cm
50 N

Figure 4.21 Simplified diagram showing forces on the 
forearm. For Worked example 4. Note that another 
force acts on the arm at the elbow; we do not know the 
size or direction of this force but we can ignore it by 
taking moments about the elbow.

7 A wheelbarrow is loaded as shown in Figure 4.22.
a Calculate the force that the gardener needs to exert 

to hold the wheelbarrow’s legs o" the ground.
b Calculate the force exerted by the ground on the 

legs of the wheelbarrow (taken both together) 
when the gardener is not holding the handles.

8 A traditional pair of scales uses sliding masses of 
10 g and 100 g to achieve a balance. A diagram of the 
arrangement is shown in Figure 4.23. The bar itself is 
supported with its centre of gravity at the pivot.
a Calculate the value of the mass M, attached at X.
b State one advantage of this method of measuring 

mass.
c Determine the upward force of the pivot on the bar.

9 Figure 4.24 shows a beam with four forces acting on it
a For each force, calculate the moment of the force 

about point P.
b State whether each moment is clockwise or 

anticlockwise.
c State whether or not the moments of the forces 

are balanced.
400 N 1.20 m 

0.50 m

0.20 m 

20 cm 100 g

10 g
30 cm 

pivot

45 cm

X

M

25 cm 25 cm 50 cmP

F1 = 10 N F4 = 5 N

F2 = 10 N F3 = 10 N
30°

Figure 4.22  
For Question 7. 

Figure 4.23 For Question 8.

Figure 4.24 For Question 9. 

QUESTIONS

WORKED EXAMPLES (continued)
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Pure turning e!ect
When we calculate the moment of a single force, the result 
depends on the point or pivot about which the moment 
acts. !e further the force is from the pivot, the greater 
the moment. A couple is di#erent; the moment of a couple 
does not depend on the point about which it acts, only 
on the perpendicular distance between the two forces. 
A single force acting on an object will tend to make the 
object accelerate (unless there is another force to balance 
it). A couple, however, is a pair of equal and opposite 
forces, so it will not make the object accelerate. !is means 
we can think of a couple as a pure ‘turning e#ect’, the size 
of which is given by its torque.

For an object to be in equilibrium, two conditions must be 
met at the same time:

 ■ The resultant force acting on the object is zero.
 ■ The resultant moment is zero.

The torque of a couple
Figure 4.25 shows the forces needed to turn a car’s steering 
wheel. !e two forces balance up and down (15 N up 
and 15 N down), so the wheel will not move up, down or 
sideways. However, the wheel is not in equilibrium. !e 
pair of forces will cause it to rotate.

15 N

15 N

0.20 m 0.20 m
Figure 4.25 Two forces act on this steering wheel to make it 
turn. 

A pair of forces like that in Figure 4.25 is known as a 
couple. A couple has a turning e#ect, but does not cause 
an object to accelerate. To form a couple, the two forces 
must be:

 ■ equal in magnitude
 ■ parallel, but opposite in direction
 ■ separated by a distance d.

!e turning e#ect or moment of a couple is known as its 
torque. We can calculate the torque of the couple in Figure 
4.25 by adding the moments of each force about the centre 
of the wheel:

torque of couple = (15 × 0.20) + (15 × 0.20)

 = 6.0 N m
We could have found the same result by multiplying one of 
the forces by the perpendicular distance between them:

torque of a couple = 15 × 0.4 = 6.0 N m
!e torque of a couple is de"ned as follows:

torque of a couple = one of the forces × perpendicular  
 distance between the forces

 10 The driving wheel of a car travelling at a constant 
velocity has a torque of 137 N m applied to it by 
the axle that drives the car (Figure 4.26). The 
radius of the tyre is 0.18 m. Calculate the driving 
force provided by this wheel.

0.18 m

Figure 4.26 For Question 10.

QUESTION
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Summary
 ■ Forces are vector quantities that can be added by 

means of a vector triangle. Their resultant can be 
determined using trigonometry or by scale drawing.

 ■ Vectors such as forces can be resolved into 
components. Components at right angles to one 
another can be treated independently of one another. 
For a force F at an angle θ to the x-direction, the 
components are:
x-direction: F cos θ
y-direction: F sin θ

 ■ The moment of a force = force × perpendicular 
distance of the pivot from the line of action of 
the force.

 ■ The principle of moments states that, for any object 
that is in equilibrium, the sum of the clockwise 
moments about any point provided by the 
forces acting on the object equals the sum of the 
anticlockwise moments about that same point.

 ■ A couple is a pair of equal, parallel but opposite forces 
whose e" ect is to produce a turning e" ect on a body 
without giving it linear acceleration.

torque of a couple = one of the forces × perpendicular 
distance between the forces

 ■ For an object to be in equilibrium, the resultant force 
acting on the object must be zero and the resultant 
moment must be zero.

End-of-chapter questions
1 A ship is pulled at a constant speed by two small boats, A and B, as shown in Figure 4.27. The engine of the 

ship does not produce any force.

Figure 4.27 For End-of-chapter Question 1. 

 The tension in each cable between A and B and the ship is 4000 N.
a Draw a free-body diagram showing the three horizontal forces acting on the ship. [2]
b Draw a vector diagram to scale showing these three forces and use your diagram to find the value 

of the drag force on the ship. [2]

40°

B

A

40°
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2 A block of mass 1.5 kg is at rest on a rough surface which is inclined at 20° to the horizontal as shown 
in Figure 4.28.

Figure 4.28 For End-of-chapter Question 2. 

a Draw a free-body diagram showing the three forces acting on the block. [2]
b Calculate the component of the weight that acts down the slope. [2]
c Use your answer to b to determine the force of friction that acts on the block. [2]
d Determine the normal contact force between the block and the surface. [3]

3 The free-body diagram (Figure 4.29) shows three forces that act on a stone hanging at rest from two strings.

Figure 4.29 For End-of-chapter Question 3. 

a Calculate the horizontal component of the tension in each string. Why should these two components 
be equal in magnitude? [5]

b Calculate the vertical component of the tension in each string. [4]
c Use your answer to b to calculate the weight of the stone. [2]
d Draw a vector diagram of the forces on the stone. This should be a triangle of forces. [1]
e Use your diagram in d to calculate the weight of the stone. [2]

4 The force F shown in Figure 4.30 has a moment of 40 N m about the pivot. Calculate the magnitude 
of the force F. [4]

Figure 4.30 For End-of-chapter Question 4. 

20°

tension in string 1
1.00 N tension in string 2

0.58 N60°

horizontal

weight of stone

30°

2.0 m

45°

F
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5 The asymmetric bar shown in Figure 4.31 has a weight of 7.6 N and a centre of gravity that is 0.040 m from the 
wider end, on which there is a load of 3.3 N. It is pivoted a distance of 0.060 m from its centre of gravity. 
Calculate the force P that is needed at the far end of the bar in order to maintain equilibrium. [4]

Figure 4.31 For End-of-chapter Question 5. 

6 a Explain what is meant by:
i a couple [1]
ii torque. [2]

b The engine of a car produces a torque of 200 N m on the axle of the wheel in contact with the road. 
The car travels at a constant velocity towards the right (Figure 4.32).

Figure 4.32 For End-of-chapter Question 6. 

i Copy Figure 4.32 and show the direction of rotation of the wheel, and the horizontal component 
of the force that the road exerts on the wheel. [2]

ii State the resultant torque on the wheel. Explain your answer. [2]
iii The diameter of the car wheel is 0.58 m. Determine the value of the horizontal component of 

the force of the road on the wheel. [1]

7 a  Explain what is meant by the centre of gravity of an object. [2]
b A flagpole of mass 25 kg is held in a horizontal position by a cable 

as shown in Figure 4.33. The centre of gravity of the flagpole is at 
a distance of 1.5 m from the fixed end.
i Write an equation to represent taking moments about the 

le# -hand end of the flagpole. Use your equation to find the 
tension T in the cable. [4]

ii Determine the vertical component of the force at the 
le# -hand end of the flagpole. [2]

P

0.040 m 0.060 m 0.080 m 

pivot
load

load = 3.3 N
W = 7.6 N

ground

axle

cable

30°flagpole

1.5 m

weight 2.5 m

T 

Figure 4.33 For End-of-chapter Question 7. 
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8 a  State the two conditions necessary for an object to be in equilibrium. [2]
b A metal rod of length 90 cm has a disc of radius 24 cm fixed rigidly at its centre, as shown in 

Figure 4.34 The assembly is pivoted at its centre.

Figure 4.34 For End-of-chapter Question 8. 

 Two forces, each of magnitude 30 N, are applied normal to the rod at each end so as to 
produce a turning e" ect on the rod. A rope is attached to the edge of the disc to prevent rotation.

 Calculate:
i the torque of the couple produced by the 30 N forces [1]
ii the tension T in the rope. [3]

9 a Explain what is meant by the torque of a couple. [2]
b Three strings, A, B and C, are attached to a circular ring, as shown in Figure 4.35.

 The strings and the ring all lie on a smooth horizontal surface and are at rest. The tension in 
string A is 8.0 N. Calculate the tension in strings B and C. [4]

90 cm

30 N

30 N
rope

24 cm
T

50°

90°
string B

string A

string C

Figure 4.35 For End-of-chapter Question 9. 
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 10 Figure 4.36 shows a picture hanging symmetrically by two cords from a nail fixed to a wall. 
The picture is in equilibrium.

Figure 4.36 For End-of-chapter Question 10. 

a Explain what is meant by equilibrium. [2]
b Draw a vector diagram to represent the three forces acting on the picture in the vertical plane. 

Label each force clearly with its name and show the direction of each force with an arrow. [2]
c The tension in the cord is 45 N and the angle that each end of the cord makes with the 

horizontal is 50°. Calculate:
i the vertical component of the ten sion in the cord [1]
ii the weight of the picture. [1]

50° 50°

nail

cord
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Learning outcomes
You should be able to:

 ■ give examples of conversions of energy between 
di! erent forms

 ■ understand and use the concept of work
 ■ apply the principle of conservation of energy to simple 

examples involving energy in di! erent forms
 ■ derive and use the formulae for kinetic energy and 

potential energy
 ■ define and use the equation for power

Chapter 5:
Work, energy
and power
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The idea of energy
The Industrial Revolution started in the late 
18th century in the British Isles. Today, many 
other countries are undergoing the process of 
industrialisation (Figure 5.1). Industrialisation began 
as engineers developed new machines which were 
capable of doing the work of hundreds of cra!smen 
and labourers. At first, they made use of the traditional 
techniques of water power and wind power. Water 
stored behind a dam was used to turn a wheel, 
which turned many machines. By developing new 
mechanisms, the designers tried to extract as much 
as possible of the energy stored in the water. Steam 
engines were developed, initially for pumping water 
out of mines. Steam engines use a fuel such as coal; 
there is much more energy stored in 1 kg of coal than in 
1 kg of water held behind a dam. Steam engines soon 
powered the looms of the textile mills, and the British 
industry came to dominate world trade in textiles.

Nowadays, most factories and mills rely on  
electrical power, generated by burning coal or gas at 
a power station. The fuel is burnt to release its store 
of energy. High-pressure steam is generated, and this 
turns a turbine which turns a generator. Even in the 
most e#icient coal-fired power station, only about 
40% of the energy from the fuel is transferred to the 
electrical energy that the station supplies to the grid.

Engineers strove to develop machines which made 
the most e#icient use of the energy supplied to them. 
At the same time, scientists were working out the basic 
ideas of energy transfer and energy transformations. 
The idea of energy itself had to be developed; it was 

not obvious at first that heat, light, electrical energy 
and so on could all be thought of as being, in some 
way, forms of the same thing. In fact, steam engines 
had been in use for 150 years before it was realised 
that their energy came from the heat supplied to them 
from their fuel.

The earliest steam engines had very low e#iciencies 
– many converted less than 1% of the energy supplied 
to them into useful work. The understanding of the 
relationship between work and energy led to many 
ingenious ways of making the most of the energy 
supplied by fuel.

This improvement in energy e#iciency has led to 
the design of modern engines such as the jet engines 
which have made long-distance air travel a commercial 
possibility (Figure 5.2).

Figure 5.1 Anshan steel works, China. 

Figure 5.2 The jet engines of this aircra# are designed to 
make e"icient use of their fuel. If they were less e"icient, their 
thrust might only be su"icient to li# the empty aircra#, and 
the passengers would have to be le# behind.
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Doing work, transferring energy
!e weight-li$er shown in Figure 5.3 has powerful 
muscles. !ey can provide the force needed to li$ a large 
weight above her head – about 2 m above the ground. !e 
force exerted by the weight-li$er transfers energy from 
her to the weights. We know that the weights have gained 
energy because, when the athlete releases them, they come 
crashing down to the ground.

you are not doing any work on the weights, because you 
are not transferring energy to the weights once they are 
above your head. Your muscles get tired because they are 
constantly relaxing and contracting, and this uses energy, 
but none of the energy is being transferred to the weights.

Calculating work done
Because doing work de"nes what we mean by energy,  
we start this chapter by considering how to calculate  
work done. !ere is no doubt that you do work if you push 
a car along the road. A force transfers energy from you to 
the car. But how much work do you do? Figure 5.4 shows 
the two factors involved:

 ■ the size of the force F – the bigger the force, the greater the 
amount of work you do

 ■ the distance s you push the car – the further you push it, the 
greater the amount of work done.

So, the bigger the force, and the further it moves, the 
greater the amount of work done.

The work done by a force is defined as the product of the 
force and the distance moved in the direction of the force:

W =  F × s
where s is the distance moved in the direction of the force.

Doing work Not doing work
Pushing a car to start it 
moving: your force transfers 
energy to the car. The car’s 
kinetic energy (i.e. ‘movement 
energy’) increases.

Pushing a car but it does 
not budge: no energy is 
transferred, because your 
force does not move it. The 
car’s kinetic energy does not 
change.

Li$ing weights: you are doing 
work as the weights move 
upwards. The gravitational 
potential energy of the 
weights increases.

Holding weights above your 
head: you are not doing 
work on the weights (even 
though you may find it tiring) 
because the force you apply 
is not moving them. The 
gravitational potential energy 
of the weights is not changing.

A falling stone: the force of 
gravity is doing work. The 
stone’s kinetic energy is 
increasing.

The Moon orbiting the Earth: 
the force of gravity is not doing 
work. The Moon’s kinetic 
energy is not changing.

Writing an essay: you are 
doing work because you need 
a force to move your pen 
across the page, or to press 
the keys on the keyboard.

Reading an essay: this may 
seem like ‘hard work’, but no 
force is involved, so you are 
not doing any work.

Table 5.1 The meaning of ‘doing work’ in physics. 

As the athlete li$s the weights and transfers energy to 
them, we say that her li$ing force is doing work. ‘Doing 
work’ is a way of transferring energy from one object to 
another. In fact, if you want to know the scienti"c meaning 
of the word ‘energy’, we have to say it is ‘that which is 
transferred when a force moves through a distance’. So 
work and energy are two closely linked concepts.

In physics, we o$en use an everyday word but with a 
special meaning. Work is an example of this. Table 5.1 
describes some situations which illustrate the meaning of 
doing work in physics.

It is important to appreciate that our bodies sometimes 
mislead us. If you hold a heavy weight above your head 
for some time, your muscles will get tired. However, 

Figure 5.3 It is hard work being a weight-li#er.
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Energy transferred
Doing work is a way of transferring energy. For both 
energy and work the correct SI unit is the joule (J). !e 
amount of work done, calculated using W = F × s, shows 
the amount of energy transferred:

work done = energy transferred

Newtons, metres and joules
From the equation W = F × s we can see how the unit of 
force (the newton), the unit of distance (the metre) and the 
unit of work or energy (the joule) are related.

 1 joule = 1 newton × 1 metre

 1 J = 1 N m

!e joule is de"ned as the amount of work done when 
a force of 1 newton moves a distance of 1 metre in 
the direction of the force. Since work done = energy 
transferred, it follows that a joule is also the amount of 
energy transferred when a force of 1 newton moves a 
distance of 1 metre in the direction of the force.

F

F = 300 N
 s = 5.0 m

F

s

Figure 5.4 You have to do work to start the car moving. 

1 In each of the following examples, explain whether 
or not any work is done by the force mentioned.
a You pull a heavy sack along rough ground.
b The force of gravity pulls you downwards when 

you fall o" a wall.
c The tension in a string pulls on a stone when 

you whirl it around in a circle at a steady speed.
d The contact force of the bedroom floor stops 

you from falling into the room below.

2 A man of mass 70 kg climbs stairs of vertical height 
2.5 m. Calculate the work done against the force of 
gravity. (Take g = 9.81 m s−2.)

3 A stone of weight 10 N falls from the top of a 250 m 
high cli".
a Calculate how much work is done by the force 

of gravity in pulling the stone to the foot of the 
cli".

b How much energy is transferred to the stone?

Force, distance and direction
It is important to appreciate that, for a force to do work, 
there must be movement in the direction of the force. Both 
the force F and the distance s moved in the direction of 
the force are vector quantities, so you should know that 
their directions are likely to be important. To illustrate 
this, we will consider three examples involving gravity 
(Figure 5.5). In the equation for work done, W = F × s , the 
distance moved s is thus the displacement in the direction 
of the force.

Suppose that the force F moves through a distance 
s which is at an angle θ to F, as shown in Figure 5.6. To 
determine the work done by the force, it is simplest to 
determine the component of F in the direction of s. !is 
component is F cos θ, and so we have:

work done = (F cos θ) × s
or simply:

work done = Fs cos θ
Worked example 1 shows how to use this.

In the example shown in Figure 5.4,  
F = 300 N and s = 5.0 m, so:

work done W = F × s = 300 × 5.0 = 1500 J

QUESTIONS
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Doing work Not doing work

1 You drop a stone weighing 5.0 N from 
the top of a 50 m high cli!. What is the 
work done by the force of gravity?
force on stone F
 = pull of gravity = weight of stone
 = 5.0 N vertically downwards

2 A stone weighing 5.0 N rolls 50 m down 
a slope. What is the work done by the 
force of gravity?
force on stone F
 = pull of gravity = weight of stone
 = 5.0 N vertically downwards

3 A satellite orbits the Earth at a constant 
height and at a constant speed. The 
weight of the satellite at this height is 
500 N. What is the work done by the 
force of gravity?
force on satellite F
 = pull of gravity = weight of satellite
 = 500 N towards centre of Earth

Distance moved by stone is s = 50 m
vertically downwards.

Distance moved by stone down slope is  
50 m, but distance moved in direction of 
force is 30 m.

Distance moved by satellite towards centre 
of Earth (i.e. in the direction of force) is 
s = 0.

Since F and s are in the same direction, 
there is no problem:
work done = F × s
 = 5.0 × 50
 = 250 J

The work done by the force of gravity is:
work done = 5.0 × 30
 = 150 J

The satellite remains at a constant distance 
from the Earth. It does not move in the 
direction of F.
The work done by the Earth’s pull on the 
satellite is zero because F = 500 N but s = 0:
work done = 500 × 0
 = 0 J

Figure 5.5 Three examples involving gravity. 

F

30 m
50 m

F
F

1 A man pulls a box along horizontal ground using a rope 
(Figure 5.7). The force provided by the rope is 200 N, at 
an angle of 30° to the horizontal. Calculate the work 
done if the box moves 5.0 m along the ground.

 Step 1 Calculate the component of the force in the 
direction in which the box moves. This is the horizontal 
component of the force:
horizontal component of force = 200 cos 30° ≈ 173 N

 Hint: F cos θ is the component of the force at an angle θ to 
the direction of motion.

 Step 2 Now calculate the work done:
work done = force × distance moved = 173 × 5.0 = 865 J

 Hint: Note that we could have used the equation  
work done = Fs cos θ to combine the two steps into one.

30°

5.0 m

200 N

F

F cos θ 

distance travelled = s

direction of motion
θ

Figure 5.6 The work done by a force 
depends on the angle between the 
force and the distance it moves. 

Figure 5.7 For Worked example 1.

WORKED EXAMPLE
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A gas doing work
Gases exert pressure on the walls of their container. If 
a gas expands, the walls are pushed outwards – the gas 
has done work on its surroundings. In a steam engine, 
expanding steam pushes a piston to turn the engine, and 
in a car engine, the exploding mixture of fuel and air does 
the same thing, so this is an important situation.

gas

A

piston pushed
by gas

s

Figure 5.8 When a gas expands, it does work on its 
surroundings.

Figure 5.8 shows a gas at pressure p inside a cylinder 
of cross-sectional area A. !e cylinder is closed by a 
moveable piston. !e gas pushes the piston a distance s. If 
we know the force F exerted by the gas on the piston, we 
can deduce an expression for the amount of work done by 
the gas.

From the de"nition of pressure (pressure = force
area  ), the 

force exerted by the gas on the piston is given by:
force = pressure × area

F = p × A
and the work done is force × displacement:

W = p × A × s
But the quantity A × s is the increase in volume of the gas; 
that is, the shaded volume in Figure 5.8. We call this ΔV, 
where the Δ indicates that it is a change in V. Hence the 
work done by the gas in expanding is:

W = pΔV
Notice that we are assuming that the pressure p does not 
change as the gas expands. !is will be true if the gas is 
expanding against the pressure of the atmosphere, which 
changes only very slowly.

4 The crane shown in Figure 5.9 li#s its 500 N load 
to the top of the building from A to B. Distances 
are as shown on the diagram. Calculate how much 
work is done by the crane.

Figure 5.9 For Question 4. The dotted line shows 
the track of the load as it is li#ed by the crane. 

5 Figure 5.10 shows the forces acting on a box which 
is being pushed up a slope. Calculate the work 
done by each force if the box moves 0.50 m up the 
slope.

Figure 5.10 For Question 5. 

6 When you blow up a balloon, the expanding 
balloon pushes aside the atmosphere. How much 
work is done against the atmosphere in blowing 
up a balloon to a volume of 2 litres (0.002 m3)? 
(Atmospheric pressure = 1.0 × 105 N m−2.)

30 m

40 m 50 m

B

A

100 N 

70 N 

100 N 

30 N 

45°

θ

QUESTIONS
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An equation for gravitational potential 
energy
!e change in the gravitational potential energy (g.p.e.) of 
an object, Ep, depends on the change in its height, h. We 
can calculate Ep using this equation:

change in g.p.e. = weight × change in height

Ep = (mg) × h
or simply

Ep = mgh
It should be clear where this equation comes from. !e 
force needed to li$ an object is equal to its weight mg, 
where m is the mass of the object and g is the acceleration 
of free fall or the gravitational "eld strength on the 
Earth’s surface. !e work done by this force is given by 
force × distance moved, or weight × change in height. You 
might feel that it takes a force greater than the weight of 
the object being raised to li$ it upwards, but this is not so. 
Provided the force is equal to the weight, the object will 
move upwards at a steady speed.

Note that h stands for the vertical height through 
which the object moves. Note also that we can only use the 
equation E p = mgh for relatively small changes in height. 
It would not work, for example, in the case of a satellite 
orbiting the Earth. Satellites orbit at a height of at least 
200 km and g has a smaller value at this height.

Other forms of potential energy
Potential energy is the energy an object has because 
of its position or shape. So, for example, an object’s 
gravitational potential energy changes when it moves 
through a gravitational "eld. (!ere is much more about 
gravitational "elds in Chapter 18.)

We can identify other forms of potential energy. An 
electrically charged object has electric potential energy 
when it is placed in an electric "eld (see Chapter 8). 
An object may have elastic potential energy when it is 
stretched, squashed or twisted – if it is released it goes back 
to its original shape (see Chapter 7).

Gravitational potential energy
If you li$ a heavy object, you do work. You are providing 
an upward force to overcome the downward force of 
gravity on the object. !e force moves the object upwards, 
so the force is doing work.

In this way, energy is transferred from you to the 
object. You lose energy, and the object gains energy. We 
say that the gravitational potential energy Ep of the object 
has increased. Worked example 2 shows how to calculate a 
change in gravitational potential energy – or g.p.e.  
for short.

2 A weight-li#er raises weights with a mass of 200 kg 
from the ground to a height of 1.5 m. Calculate how 
much work he does. By how much does the g.p.e. of 
the weights increase?

 Step 1 As shown in Figure 5.11, the downward force 
on the weights is their weight, W = mg. An equal, 
upward force F is required to li# them.

Figure 5.11 For Worked example 2. 

W = F = mg = 200 × 9.81 = 1962 N

 Hint: It helps to draw a diagram of the situation.

 Step 2 Now we can calculate the work done by the 
force F:
work done = force × distance moved
 = 1962 × 1.5 ≈ 2940 J

 Note that the distance moved is in the same 
direction as the force. So the work done on the 
weights is about 2940 J. This is also the value of the 
increase in their g.p.e.

1.5 m

F

mg

WORKED EXAMPLE
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g.p.e.–k.e. transformations
A motor drags the roller-coaster car to the top of the "rst 
hill. !e car runs down the other side, picking up speed 
as it goes (see Figure 5.12). It is moving just fast enough 
to reach the top of the second hill, slightly lower than the 
"rst. It accelerates downhill again. Everybody screams!

!e motor provides a force to pull the roller-coaster 
car to the top of the hill. It transfers energy to the car. But 
where is this energy when the car is waiting at the top of 
the hill? !e car now has gravitational potential energy; 
as soon as it is given a small push to set it moving, it 
accelerates. It gains kinetic energy and at the same time it 
loses g.p.e.

Kinetic energy
As well as li$ing an object, a force can make it accelerate. 
Again, work is done by the force and energy is transferred 
to the object. In this case, we say that it has gained kinetic 
energy, Ek. !e faster an object is moving, the greater its 
kinetic energy (k.e.).

For an object of mass m travelling at a speed v, we have:
 kinetic energy =   12 × mass × speed2

 Ek =  12  mv2

Deriving the formula for kinetic energy
!e equation for k.e., Ek = 12mv2, is related to one of the 
equations of motion. We imagine a car being accelerated 
from rest (u = 0) to velocity v. To give it acceleration a, it 
is pushed by a force F for a distance s. Since u = 0, we can 
write the equation v2 = u2 + 2as as:

v2 = 2as
Multiplying both sides by 12m gives:

1
2 mv2 = mas

Now, ma is the force F accelerating the car, and mas is the 
force × the distance it moves, that is, the work done by the 
force. So we have:

1
2mv 2 = work done by force F

!is is the energy transferred to the car, and hence its 
kinetic energy.

3 Calculate the increase in kinetic energy of a car of 
mass 800 kg when it accelerates from 20 m s−1 to 
30 m s−1.

 Step 1 Calculate the initial k.e. of the car:
Ek =  1

2 mv2  =  12 × 800 × (20)2 = 160 000 J
 =  160 kJ

 Step 2 Calculate the final k.e. of the car:
Ek =  1

2 mv2  =  12 × 800 × (30)2 = 360 000 J
 =  360 kJ

 Step 3 Calculate the change in the car’s k.e.:
change in k.e. = 360 − 160 = 200 kJ

 Hint: Take care! You can’t calculate the change in k.e. 
by squaring the change in speed. In this example, the 
change in speed is 10 m s−1, and this would give an 
incorrect value for the change in k.e.

7 Calculate how much gravitational potential 
energy is gained if you climb a flight of stairs. 
Assume that you have a mass of 52 kg and that the 
height you li# yourself is 2.5 m.

8 A climber of mass 100 kg (including the equipment 
she is carrying) ascends from sea level to the top 
of a mountain 5500 m high. Calculate the change 
in her gravitational potential energy.

9 a  A toy car works by means of a stretched rubber 
band. What form of potential energy does the 
car store when the band is stretched?

b A bar magnet is lying with its north pole next 
to the south pole of another bar magnet. A 
student pulls them apart. Why do we say that 
the magnets’ potential energy has increased? 
Where has this energy come from?

 10 Which has more k.e., a car of mass 500 kg 
travelling at 15 m s−1 or a motorcycle of mass 
250 kg travelling at 30 m s−1?

 11 Calculate the change in kinetic energy of a ball of 
mass 200 g when it bounces. Assume that it hits 
the ground with a speed of 15.8 m s−1 and leaves 
it at 12.2 m s−1.

QUESTIONS

QUESTIONS

WORKED EXAMPLE
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Down, up, down – energy 
changes
When an object falls, it speeds up. Its g.p.e. decreases 
and its k.e. increases. Energy is being transformed from 
gravitational potential energy to kinetic energy. Some energy 
is likely to be lost, usually as heat because of air resistance. 
However, if no energy is lost in the process, we have:

decrease in g.p.e. = gain in k.e.
We can use this idea to solve a variety of problems, as 
illustrated by Worked example 4.

As the car runs along the roller-coaster track (Figure 
5.13), its energy changes.
1 At the top of the "rst hill, it has the most g.p.e.
2 As it runs downhill, its g.p.e. decreases and its k.e. 

increases.
3 At the bottom of the hill, all of its g.p.e. has been 

changed to k.e. and heat and sound energy.
4 As it runs back uphill, the force of gravity slows it 

down. k.e. is being changed to g.p.e.
Inevitably, some energy is lost by the car. !ere is friction 
with the track, and air resistance. So the car cannot return 
to its original height. !at is why the second hill must be 
slightly lower than the "rst. It is fun if the car runs through 
a trough of water, but that takes even more energy, and the 
car cannot rise so high. !ere are many situations where 
an object’s energy changes between gravitational potential 
energy and kinetic energy. For example:

 ■ a high diver falling towards the water – g.p.e. changes to k.e.
 ■ a ball is thrown upwards – k.e. changes to g.p.e.
 ■ a child on a swing – energy changes back and forth between 

g.p.e. and k.e.

maximum g.p.e.

g.p.e. = 0

g.p.e. → k.e.

k.e. → g.p.e.

k.e.

Figure 5.13 Energy changes along a roller-coaster.

4 A pendulum consists of a brass sphere of mass 5.0 kg 
hanging from a long string (see Figure 5.14). The 
sphere is pulled to the side so that it is 0.15 m above 
its lowest position. It is then released. How fast will it 
be moving when it passes through the lowest point 
along its path?

0.15 m
v

Figure 5.14 For Worked example 4. 

Figure 5.12 The roller-coaster car accelerates as it comes 
downhill. It’s even more exciting if it runs through water. 

WORKED EXAMPLE
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Energy transfers
Climbing bars
If you are going to climb a mountain, you will need 
a supply of energy. !is is because your gravitational 
potential energy is greater at the top of the mountain than 
at the base. A good supply of energy would be some bars of 
chocolate. Each bar supplies 1200 kJ. Suppose your weight 
is 600 N and you climb a 2000 m high mountain. !e work 
done by your muscles is:

work done = Fs = 600 × 2000 = 1200 kJ
So one bar of chocolate will do the trick. Of course, in 
reality, it would not. Your body is ine)cient. It cannot 
convert 100% of the energy from food into gravitational 
potential energy. A lot of energy is wasted as your muscles 
warm up, you perspire, and your body rises and falls as 
you walk along the path. Your body is perhaps only 5% 
e)cient as far as climbing is concerned, and you will 
need to eat 20 chocolate bars to get you to the top of the 
mountain. And you will need to eat more to get you back 
down again.

Many energy transfers are ine)cient. !at is, only part 
of the energy is transferred to where it is wanted. !e rest 
is wasted, and appears in some form that is not wanted 
(such as waste heat), or in the wrong place. You can 
determine the e)ciency of any device or system using the 
following equation:

e)ciency = useful output energy
total input energy   × 100%

A car engine is more e)cient than a human body, but not 
much more. Figure 5.16 shows how this can be represented 
by a Sankey diagram. !e width of the arrow represents 
the fraction of the energy which is transformed to each 
new form. In the case of a car engine, we want it to provide 

 12 Re-work Worked example 4 for a brass sphere of mass 10 kg, and 
show that you get the same result. Repeat with any other value  
of mass.

 13 Calculate how much gravitational potential energy is lost by an 
aircra# of mass 80 000 kg if it descends from an altitude of 10 000 m 
to an altitude of 1000 m. What happens to this energy if the pilot 
keeps the aircra#’s speed constant?

 14 A high diver (see Figure 5.15) reaches the highest point in her jump 
with her centre of gravity 10 m above the water. Assuming that all 
her gravitational potential energy becomes kinetic energy during 
the dive, calculate her speed just before she enters the water.

 Step 1 Calculate the loss in g.p.e. as the sphere falls 
from its highest position:
Ep =  mgh = 5.0 ×  9.81 × 0.15 = 7.36 J

 Step 2 The gain in the sphere’s k.e. is 7.36 J. We 
can use this to calculate the sphere’s speed. First 
calculate v  2, then v:

 1
2 mv  2 = 7.36

 12 × 5.0 × v  2 = 7.36

 v  2 = 2 × 
7.36
5.0    = 2.944

 v  =     2.944  ≈ 1.72 ms−1 ≈ 1.7 ms−1

 Note that we would obtain the same result in Worked 
example 4 no matter what the mass of the sphere. 
This is because both k.e. and g.p.e. depend on  
mass m. If we write:
 change in g.p.e. = change in k.e.

 mgh =  
1
2 

mv2

 we can cancel m from both sides. Hence:

 gh = v
2

2

  v  2 = 2gh

 Therefore:
v =     2gh

 The final speed v only depends on g and h. The mass 
m of the object is irrelevant. This is not surprising; we 
could use the same equation to calculate the speed 
of an object falling from height h. An object of small 
mass gains the same speed as an object of large 
mass, provided air resistance has no e"ect.

Figure 5.15 A high 
dive is an example 
of converting 
(transforming) 
gravitational 
potential energy to 
kinetic energy.

WORKED EXAMPLE (continued)

QUESTIONS
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kinetic energy to turn the wheels. In practice, 80% of the 
energy is transformed into heat: the engine gets hot, and 
heat escapes into the surroundings. So the car engine is 
only 20% e)cient.

We have previously considered situations where an 
object is falling, and all of its gravitational potential energy 
changes to kinetic energy. In Worked example 5, we will 
look at a similar situation, but in this case the energy 
change is not 100% e)cient.

Conservation of energy
Where does the lost energy from the water in the reservoir 
go? Most of it ends up warming the water, or warming the 

Figure 5.16 We want a car engine to supply kinetic energy. This 
Sankey diagram shows that only 20% of the energy supplied to 
the engine ends up as kinetic energy – it is 20% e"icient. 

5 Figure 5.17 shows a dam which stores water. The outlet 
of the dam is 20 m below the surface of the water in the 
reservoir. Water leaving the dam is moving at 16 m s−1. 
Calculate the percentage of the gravitational potential 
energy that is lost when converted into kinetic energy.

 Step 1 We will picture 1 kg of water, starting at the 
surface of the lake (where it has g.p.e., but no k.e.) and 
flowing downwards and out at the foot (where it has k.e., 
but less g.p.e.). Then:
change in g.p.e. of water between surface and outflow  
 = mgh = 1 × 9.81 × 20 = 196 J

 Step 2 Calculate the k.e. of 1 kg of water as it leaves the 
dam:
 k.e. of water leaving dam =  12  mv  2

 =  12  × 1 × (16)2

 = 128 J

 Step 3 For each kilogram of water flowing out of the 
dam, the loss of energy is:
loss = 196 − 128 = 68 J

percentage loss =  
68

196  × 100% ≈ 35%

 If you wanted to use this moving water to generate 
electricity, you would have already lost more than a third 
of the energy which it stores when it is behind the dam.

Figure 5.17 Water stored behind the dam has 
gravitational potential energy; the fast-flowing 
water leaving the foot of the dam has kinetic energy.

20m 

dam wall

outlet

pipes that the water (ows through. !e out(ow of water is 
probably noisy, so some sound is produced.

Here, we are assuming that all of the energy ends up 
somewhere. None of it disappears. We assume the same 
thing when we draw a Sankey diagram. !e total thickness 
of the arrow remains constant. We could not have an 
arrow which got thinner (energy disappearing) or thicker 
(energy appearing out of nowhere).

We are assuming that energy is conserved. !is is 
a principle, known as the principle of conservation of 
energy, which we expect to apply in all situations.

Energy cannot be created or destroyed. It can only be 
converted from one form to another.

We should always be able to add up the total amount of 
energy at the beginning, and be able to account for it all at 
the end. We cannot be sure that this is always the case, but 
we expect it to hold true.

We have to think about energy changes within a closed 
system; that is, we have to draw an imaginary boundary 
around all of the interacting objects which are involved in 
an energy transfer.

100%

80%

20%

chemical
energy 
supplied
to engine 

heat to
environment 

kinetic
energy
to wheels

WORKED EXAMPLE
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 16 Calculate how much work is done by a 50 kW car 
engine in a time of 1.0 minute.

 17 A car engine does 4200 kJ of work in one minute. 
Calculate its output power, in kilowatts.

 18 A particular car engine provides a force of 700 N 
when the car is moving at its top speed of 40 m s−1.

a Calculate how much work is done by the car’s 
engine in one second.

b State the output power of the engine.

engine in the second half of the 18th century. !e watt is 
de"ned as a rate of working of 1 joule per second. Hence:

1 watt = 1 joule per second
or 

1 W = 1 J s−1

In practice we also use kilowatts (kW) and megawatts (MW).
1000 watts = 1 kilowatt (1 kW)

1 000 000 watts = 1 megawatt (1 MW)
You are probably familiar with the labels on light bulbs 
which indicate their power in watts, for example 60 W or 
10 W. !e values of power on the labels tell you about the 
energy transferred by an electrical current, rather than by 
a force doing work.

Sometimes, applying the principle of conservation of 
energy can seem like a scienti"c "ddle. When physicists 
were investigating radioactive decay involving beta 
particles, they found that the particles a$er the decay had 
less energy in total than the particles before. !ey guessed 
that there was another, invisible particle which was 
carrying away the missing energy. !is particle, named 
the neutrino, was proposed by the theoretical physicist 
Wolfgang Pauli in 1931. !e neutrino was not detected by 
experimenters until 25 years later.

Although we cannot prove that energy is always 
conserved, this example shows that the principle of 
conservation of energy can be a powerful tool in helping us 
to understand what is going on in nature, and that it can help 
us to make fruitful predictions about future experiments.

 15 A stone falls from the top of a cli", 80 m high. When 
it reaches the foot of the cli", its speed is 38 m s−1.
a Calculate the proportion of the stone’s initial 

g.p.e. that is converted to k.e.
b What happens to the rest of the stone’s initial 

energy?

Power
!e word power has several di#erent meanings – political 
power, powers of ten, electrical power from power stations. 
In physics, it has a speci"c meaning which is related to 
these other meanings. Figure 5.18 illustrates what we mean 
by power in physics.

!e li$ shown in Figure 5.18 can li$ a heavy load of 
people. !e motor at the top of the building provides a 
force to raise the li$ car, and this force does work against 
the force of gravity. !e motor transfers energy to the li$ 
car. !e power P of the motor is the rate at which it does 
work. Power is de"ned as the rate of work done. As a word 
equation, power is given by:

power = work done
time taken

or

P = Wt
where W is the work done in a time t.

Units of power: the watt
Power is measured in watts, named a$er James Watt, the 
Scottish engineer famous for his development of the steam 

Figure 5.18 A li# needs a powerful motor to raise the car 
when it has a full load of people. The motor does many 
thousands of joules of work each second.

QUESTIONS

QUESTION
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Moving power
An aircra$ is kept moving forwards by the force of its 
engines pushing air backwards. !e greater the force and 
the faster the aircra$ is moving, the greater the power 
supplied by its engines.

Suppose that an aircra$ is moving with velocity v. Its 
engines provide the force F needed to overcome the drag 
of the air. In time t, the aircra$ moves a distance s equal to 
v × t. So the work done by the engines is:

work done = force × distance

W = F × v × t
and the power P (= work done

time taken) is given by:

P = Wt  = F × v × t
t

and we have:
P = F × v

power = force × velocity

6 The motor of the li# shown in Figure 5.18 provides a 
force of 20 kN; this force is enough to raise the li# by 
18 m in 10 s. Calculate the output power of the motor.

 Step 1 First, we must calculate the work done:
work done = force × distance moved
 = 20 × 18 = 360 kJ

 Step 2 Now we can calculate the motor’s output 
power:

power =  
work done
time taken  =  

360 × 103

10   =  36 kW

 Hint: Take care not to confuse the two uses of the 
letter ‘W’:

 W = watt (a unit)
 W = work done (a quantity)

 So the li# motor’s power is 36 kW. Note that this is 
its mechanical power output. The motor cannot 
be 100% e"icient since some energy is bound to 
be wasted as heat due to friction, so the electrical 
power input must be more than 36 kW.

 19 In an experiment to measure a student’s power, 
she times herself running up a flight of steps. Use 
the data below to work out her useful power.

   number of steps = 28
   height of each step = 20 cm
   acceleration of free fall = 9.81 m s−2

   mass of student = 55 kg
   time taken = 5.4 s

It may help to think of this equation in terms of units.  
!e right-hand side is in N × m s−1, and N m is the same  
as J. So the right-hand side has units of J s−1, or W, the unit 
of power. If you look back to Question 18 above, you will 
see that, to "nd the power of the car engine, rather than 
considering the work done in 1 s, we could simply have 
multiplied the engine’s force by the car’s speed.

Human power
Our energy supply comes from our food. A typical diet 
supplies 2000–3000 kcal (kilocalories) per day. !is is 
equivalent (in SI units) to about 10 MJ of energy. We need 
this energy for our daily requirements – keeping warm, 
moving about, brainwork and so on. We can determine 
the average power of all the activities of our body:

 average power = 10 MJ per day

 = 10 ×  106

86 400  = 116 W

So we dissipate energy at the rate of about 100 W. We 
supply roughly as much energy to our surroundings as a 
100 W light bulb. Twenty people will keep a room as warm 
as a 2 kW electric heater.

Note that this is our average power. If you are doing 
some demanding physical task, your power will be greater. 
!is is illustrated in Worked example 7.

Note also that the human body is not a perfectly 
e)cient system; a lot of energy is wasted when, for 
example, we li$ a heavy load. We might increase an 
object's g.p.e. by 1000 J when we li$ it, but this might 
require "ve or ten times this amount of energy to be 
expended by our bodies.

QUESTION

WORKED EXAMPLE
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Summary
 ■ The work done W when a force F moves through a 

displacement s in the direction of the force:

W = Fs or W = Fs cos θ

where θ is the angle between the force and the 
displacement.

 ■ A joule is defined as the work done (or energy 
transferred) when a force of 1 N moves a distance of 
1 m in the direction of the force.

 ■ The work done W by a gas at pressure p when it 
expands:

W = pΔV

where ΔV is the increase in its volume. 

 ■ When an object of mass m rises through a height h, 
its gravitational potential energy Ep increases by an 
amount:

Ep = mgh

 ■ The kinetic energy Ek of a body of mass m moving at 
speed v is:

Ek = 1
2 mv2

 ■ The principle of conservation of energy states that, 
for a closed system, energy can be transformed to 
other forms but the total amount of energy remains 
constant.

 ■ The e"iciency of a device or system is determined 
using the equation:

e"iciency = useful output energy
total input energy  × 100%

 ■ Power is the rate at which work is done (or energy is 
transferred):

P = Wt  and P = Fv

 ■ A watt is defined as a rate of transfer of energy of one 
joule per second.

7 A person who weighs 500 N runs up a flight of stairs in 
5.0 s (Figure 5.19). Their gain in height is 3.0 m. Calculate 
the rate at which work is done against the force of 
gravity.

 Step 1 Calculate the work done against gravity:
work done W = F × s = 500 × 3.0 = 1500 J

 Step 2 Now calculate the power:

power P  =  
W
t   =  

1500
5.0   = 300 W

 So, while the person is running up the stairs, they are 
doing work against gravity at a greater rate than their 
average power – perhaps three times as great. And, 
since our muscles are not very e"icient, they need to 
be supplied with energy even faster, perhaps at a rate 
of 1 kW. This is why we cannot run up stairs all day long 
without greatly increasing the amount we eat. The 
ine"iciency of our muscles also explains why we get hot 
when we exert ourselves.

500 N
3 m

Figure 5.19 Running up stairs can require a high rate 
of doing work. You may have investigated your own 
power in this way. 

WORKED EXAMPLE
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End-of-chapter questions
1 In each case below, discuss the energy changes taking place:

a An apple falling towards the ground [1]
b A car decelerating when the brakes are applied [1]
c A space probe falling towards the surface of a planet. [1]

2 A 120 kg crate is dragged along the horizontal ground by a 200 N force acting at an angle of 30° to the 
horizontal, as shown in Figure 5.20. The crate moves along the surface with a constant velocity 
of 0.5 m s−1. The 200 N force is applied for a time of 16 s.

Figure 5.20 For End-of-chapter Question 2. 

a Calculate the work done on the crate by:
i the 200 N force [3]
ii the weight of the crate [2]
iii the normal contact force N. [2]

b Calculate the rate of work done against the frictional force F. [2]

3 Which of the following has greater kinetic energy?
■ A 20-tonne truck travelling at a speed of 30 m s−1

■ A 1.2 g dust particle travelling at 150 km s−1 through space. [3]

4 A 950 kg sack of cement is li# ed to the top of a building 50 m high by an electric motor.
a Calculate the increase in the gravitational potential energy of the sack of cement. [2]
b The output power of the motor is 4.0 kW. Calculate how long it took to raise the sack to the top 

of the building. [2]
c The electrical power transferred by the motor is 6.9 kW. In raising the sack to the top of the building, 

how much energy is wasted in the motor as heat? [3]

5 a Define power and state its unit. [2]
b Write a word equation for the kinetic energy of a moving object. [1]
c A car of mass 1100 kg starting from rest reaches a speed of 18 m s−1 in 25 s. Calculate the average power 

developed by the engine of the car. [2]

200 N

30°

crate

weight

F

N
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6 A cyclist pedals a long slope which is at 5.0° to the horizontal (Figure 5.21). The cyclist starts from rest 
at the top of the slope and reaches a speed of 12 m s−1 a# er a time of 67 s, having travelled 40 m down 
the slope. The total mass of the cyclist and bicycle is 90 kg.

Figure 5.21 For End-of-chapter Question 6. 

a Calculate:
i the loss in gravitational potential energy as he travels down the slope [3]
ii the increase in kinetic energy as he travels down the slope. [2]

b i  Use your answers to a to determine the useful power output of the cyclist. [3]
ii Suggest one reason why the actual power output of the cyclist is larger than your value in i. [2]

7 a Explain what is meant by work. [2]
b i  Explain how the principle of conservation of energy applies to a man sliding from rest down a 

vertical pole, if there is a constant force of friction acting on him. [2]
ii The man slides down the pole and reaches the ground a# er falling a distance h = 15 m. His 

potential energy at the top of the pole is 1000 J. Sketch a graph to show how his gravitational 
potential energy Ep varies with h. Add to your graph a line to show the variation of his kinetic 
energy Ek with h. [3]

8 a  Use the equations of motion to show that the kinetic energy of an object of mass m moving with 
velocity v is  12 mv 2. [2]

b A car of mass 800 kg accelerates from rest to a speed of 20 m s−1 in a time of 6.0 s.
i Calculate the average power used to accelerate the car in the first 6.0 s. [2]
ii The power passed by the engine of the car to the wheels is constant. Explain why the 

acceleration of the car decreases as the car accelerates. [2]

9 a i Define potential energy. [1]
ii Distinguish between gravitational potential energy and elastic potential energy. [2]

b Seawater is trapped behind a dam at high tide and then released through turbines. The level 
of the water trapped by the dam falls 10.0 m until it is all at the same height as the sea.
i Calculate the mass of seawater covering an area of 1.4 × 106 m2 and with a depth of 10.0 m. 

(Density of seawater = 1030 kg m−3) [1]
ii Calculate the maximum loss of potential energy of the seawater in i when passed through 

the turbines. [2]
iii The potential energy of the seawater, calculated in ii, is lost over a period of 6.0 hours. 

Estimat e the average power output of the power station over this time period, given that 
the e" iciency of the power station is 50%. [3]

40 m

5.0°
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Chapter 6:
Momentum

Learning outcomes
You should be able to:

 ■ define linear momentum
 ■ state and apply the principle of conservation of 

momentum to collisions in one and two dimensions
 ■ relate force to the rate of change of momentum
 ■ discuss energy changes in perfectly elastic and inelastic 

collisions
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Understanding collisions
To improve the safety of cars the motion of a car 
during a crash must be understood and the forces on 
the driver minimised (Figure 6.1). In this way safer cars 
have been developed and many lives have been saved.

In this chapter, we will explore how the idea of 
momentum can allow us to predict how objects 
move a!er colliding (interacting) with each other. 
We will also see how Newton’s laws of motion can be 
expressed in terms of momentum.

 ■ Electrons that form an electric current collide with the 
vibrating ions that make up a metal wire.

 ■ Two distant galaxies collide over millions of years.

From these examples, we can see that collisions are 
happening all around us, all the time. !ey happen on the 
microscopic scale of atoms and electrons, they happen in 
our everyday world, and they also happen on the cosmic 
scale of our Universe.

Modelling collisions
Springy collisions
Figure 6.3a shows what happens when one snooker ball 
collides head-on with a second, stationary ball. !e result 
can seem surprising. !e moving ball stops dead. !e ball 
initially at rest moves o# with the same velocity as that of 
the original ball. To achieve this, a snooker player must 
observe two conditions:

 ■ The collision must be head-on. (If one ball strikes a glancing 
blow on the side of the other, they will both move o" at 
di"erent angles.)

 ■ The moving ball must not be given any spin. (Spin is an 
added complication which we will ignore in our present 
study, although it plays a vital part in the games of pool and 
snooker.)

You can mimic the collision of two snooker balls in the 
laboratory using two identical trolleys, as shown in Figure 
6.3b. !e moving trolley has its spring-load released, so 
that the collision is springy. As one trolley runs into the 

The idea of momentum
Snooker players can perform some amazing moves on the 
table, without necessarily knowing Newton’s laws of motion 
– see Figure 6.2. However, the laws of physics can help us to 
understand what happens when two snooker balls collide or 
when one bounces o# the side cushion of the table.

Here are some examples of situations involving collisions:
 ■ Two cars collide head-on.
 ■ A fast-moving car runs into the back of a slower car in front.
 ■ A footballer runs into an opponent.
 ■ A hockey stick strikes a ball.
 ■ A comet or an asteroid collides with a planet as it orbits  

the Sun.
 ■ The atoms of the air collide constantly with each other, and 

with the walls of their surroundings.

Figure 6.1 A high-speed photograph of a crash test. The cars 
collide head-on at 15 m s−1 with dummies as drivers. 

Figure 6.2 If you play pool o#en enough, you will be able to 
predict how the balls will move on the table. Alternatively, you 
can use the laws of physics to predict their motion. 
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other, the spring is at "rst compressed, and then it pushes 
out again to set the second trolley moving. !e "rst trolley 
comes to a complete halt. !e ‘motion’ of one trolley has 
been transferred to the other.

You can see another interesting result if two moving 
identical trolleys collide head-on. If the collision is springy, 
both trolleys bounce backwards. If a fast-moving trolley 
collides with a slower one, the fast trolley bounces back at 
the speed of the slow one, and the slow one bounces back 
at the speed of the fast one. In this collision, it is as if the 
velocities of the trolleys have been swapped.

a

b

Figure 6.3 a The red snooker ball, coming from the le#, has 
hit the yellow ball head-on. b You can do the same thing with 
two trolleys in the laboratory. 

Sticky collisions
Figure 6.4 shows another type of collision. In this case, the 
trolleys have adhesive pads so that they stick together when 
they collide. A sticky collision like this is the opposite of a 
springy collision like the ones described above.

If a single moving trolley collides with an identical 
stationary one, they both move o# together. A$er the 
collision, the speed of the combined trolleys is half that of 
the original trolley. It is as if the ‘motion’ of the original 
trolley has been shared between the two. If a single moving 
trolley collides with a stationary double trolley (twice the 
mass), they move o# with one-third of the original velocity.

From these examples of sticky collisions, you can see 
that, when the mass of the trolley increases as a result of a 
collision, its velocity decreases. Doubling the mass halves 
the velocity, and so on.

Figure 6.4 If a moving trolley sticks to a stationary trolley, 
they both move o" together. 

1 Here are two collisions to picture in your mind. 
Answer the question for each.
a Ball A, moving towards the right, collides with 

stationary ball B. Ball A bounces back; B moves 
o" slowly to the right. Which has the greater 
mass, A or B?

b Trolley A, moving towards the right, collides 
with stationary trolley B. They stick together, 
and move o" at less than half A’s original 
speed. Which has the greater mass, A or B?

Defining linear momentum
From the examples discussed above, we can see that two 
quantities are important in understanding collisions:

 ■ the mass m of the object
 ■ the velocity v of the object.

!ese are combined to give a single quantity, called the 
linear momentum (or simply momentum) p of an object. 
!e momentum of an object is de"ned as the product of 
the mass of the object and its velocity. Hence:

 momentum = mass × velocity
 p = mv

!e unit of momentum is kg m s−1. !ere is no special 
name for this unit in the SI system.

Momentum is a vector quantity because it is a product 
of a vector quantity (velocity) and a scalar quantity (mass). 
Momentum has both magnitude and direction. Its direction 
is the same as the direction of the object’s velocity.

QUESTION
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A group of colliding objects always has as much 
momentum a$er the collision as it had before the collision. 
!is principle is illustrated in Worked example 1.

In the earlier examples, we described how the ‘motion’ 
of one trolley appeared to be transferred to a second 
trolley, or shared with it. It is more correct to say that it 
is the trolley’s momentum that is transferred or shared. 
(Strictly speaking, we should refer to linear momentum, 
because there is another quantity called angular 
momentum which is possessed by spinning objects.)

As with energy, we "nd that momentum is also 
conserved. We have to consider objects which form a 
closed system – that is, no external force acts on them. !e 
principle of conservation of momentum states that:

Within a closed system, the total momentum in any 
direction is constant.

!e principle of conservation of momentum can also be 
expressed as follows:

For a closed system, in any direction:
total momentum of objects before collision 
 = total momentum of objects a#er collision

A

before a!er

B A B

2.0 m s–1 2.0 m s–1 1.0 m s–13.0 m s–1

1 In Figure 6.5, trolley A of mass 0.80 kg travelling at a 
velocity of 3.0 m s−1 collides head-on with a stationary 
trolley B. Trolley B has twice the mass of trolley A. The 
trolleys stick together and have a common velocity of 
1.0 m s−1 a#er the collision. Show that momentum is 
conserved in this collision.

 Step 1 Make a sketch using the information given in the 
question. Notice that we need two diagrams to show 
the situations, one before and one a#er the collision. 
Similarly, we need two calculations – one for the 
momentum of the trolleys before the collision and one 
for their momentum a#er the collision.

 Step 2 Calculate the momentum before the collision:
momentum of trolleys before collision
 = mA × uA + mB × uB

 = (0.80 × 3.0) + 0
 = 2.4 kg m s−1

 Trolley B has no momentum before the collision, 
because it is not moving.

 Step 3 Calculate the momentum a#er the collision:
momentum of trolleys a#er collision
 = (mA + mB) × vA+B

 = (0.80 + 1.60) × 1.0
 = 2.4 kg m s−1

 So, both before and a#er the collision, the trolleys have 
a combined momentum of 2.4 kg m s−1. Momentum has 
been conserved.

uA = 3.0 m s–1 uB = 0 vA+B = 1.0 m s–1

0.80 kg 0.80 kg
0.80kg

positive
direction

before a!er

A B A B
0.80 kg 0.80 kg

0.80kg

Figure 6.5 The state of trolleys A and B, before and a#er 
the collision.

2 Calculate the momentum of each of the following 
objects:
a a 0.50 kg stone travelling at a velocity of 20 m s−1

b a 25 000 kg bus travelling at 20 m s−1 on a road
c an electron travelling at 2.0 × 107 m s−1.
 (The mass of the electron is 9.1 × 10−31 kg.)

3 Two balls, each of mass 0.50 kg, collide as shown in 
Figure 6.6. Show that their total momentum before 
the collision is equal to their total momentum a#er 
the collision.

Figure 6.6 For Question 3.

QUESTIONS

WORKED EXAMPLE
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as being ‘springy’ or ‘sticky’. We should now use the 
correct scienti"c terms, perfectly elastic and inelastic.

We will look at examples of these two types of collision 
and consider what happens to linear momentum and 
kinetic energy in each.

A perfectly elastic collision
Two identical objects A and B, moving at the same speed 
but in opposite directions, have a head-on collision, as 
shown in Figure 6.8. Each object bounces back with its 
velocity reversed. !is is a perfectly elastic collision. 

Understanding collisions
!e cars in Figure 6.7 have been badly damaged by a 
collision. !e front of a car is designed to absorb the 
impact of the crash. It has a ‘crumple zone’, which 
collapses on impact. !is absorbs most of the kinetic 
energy that the car had before the collision. It is better 
that the car’s kinetic energy should be transferred to the 
crumple zone than to the driver and passengers.

Motor manufacturers make use of test labs to 
investigate how their cars respond to impacts. When a car 
is designed, the manufacturers combine so$, compressible 
materials that absorb energy with rigid structures that 
protect the car’s occupants. Old-fashioned cars had much 
more rigid structures. In a collision, they were more likely 
to bounce back and the violent forces involved were much 
more likely to prove fatal. v v v v

before a!erpositive
direction

A B A B
mmmm

Figure 6.7 The front of each car has crumpled in, as a result of 
a head-on collision. 

Two types of collision
When two objects collide, they may crumple and deform. 
!eir kinetic energy may also disappear completely as they 
come to a halt. !is is an example of an inelastic collision. 
Alternatively, they may spring apart, retaining all of 
their kinetic energy. !is is a perfectly elastic collision. 
In practice, in most collisions, some kinetic energy is 
transformed into other forms (e.g. heat or sound) and the 
collision is inelastic. Previously we described the collisions 

You should be able to see that, in this collision, both 
momentum and kinetic energy are conserved. Before 
the collision, object A of mass m is moving to the right 
at speed v and object B of mass m is moving to the le$ at 
speed v. A$erwards, we still have two masses m moving 
with speed v, but now object A is moving to the le$ and 
object B is moving to the right. We can express this 
mathematically as follows:

Before the collision
object A: mass = m velocity = v momentum = mv
object B: mass = m velocity = −v momentum = −mv
Object B has negative velocity and momentum because it is 
travelling in the opposite direction to object A. !erefore 
we have:

total momentum before collision
 = momentum of A + momentum of B
 = mv + (−mv) = 0

total kinetic energy before collision

 = k.e. of A + k.e. of B

 = 12 mv2 + 12 mv2 = mv2

Figure 6.8 Two objects may collide in di"erent ways: this is an 
elastic collision. An inelastic collision of the same two objects 
is shown in Figure 6.9.
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Again we see that momentum is conserved. However, 
kinetic energy is not conserved. It is lost because work is 
done in deforming the two objects.

In fact, momentum is always conserved in all 
collisions. !ere is nothing else into which momentum 
can be converted. Kinetic energy is usually not conserved 
in a collision, because it can be transformed into other 
forms of energy – sound energy if the collision is noisy, 
and the energy involved in deforming the objects (which 
usually ends up as internal energy – they get warmer). Of 
course, the total amount of energy remains constant, as 
prescribed by the principle of conservation of energy.

!e magnitude of the momentum of each object is the 
same. Momentum is a vector quantity and we have to 
consider the directions in which the objects travel. !e 
combined momentum is zero. On the other hand, kinetic 
energy is a scalar quantity and direction of travel is 
irrelevant. Both objects have the same kinetic energy and 
therefore the combined kinetic energy is twice the kinetic 
energy of a single object.

A$er the collision
Both objects have their velocities reversed, and we have:

total momentum a$er collision = (−mv) + mv = 0

total kinetic energy a$er collision = 12 mv2 + 12 mv2 = mv2

So the total momentum and the total kinetic energy are 
unchanged. !ey are both conserved in a perfectly elastic 
collision such as this.

In this collision, the objects have a relative speed of 2v 
before the collision. A$er their collision, their velocities 
are reversed so their relative speed is 2v again. !is is a 
feature of perfectly elastic collisions.

!e relative speed of approach is the speed of one 
object measured relative to another. If two objects are 
travelling directly towards each other with speed v, as 
measured by someone stationary on the ground, then each 
object ‘sees’ the other one approaching with a speed of 
2v. !us if objects are travelling in opposite directions we 
add their speeds to "nd the relative speed. If the objects 
are travelling in the same direction then we subtract their 
speeds to "nd the relative speed.

In a perfectly elastic collision,  
relative speed of approach = relative speed of separation.

An inelastic collision
In Figure 6.9, the same two objects collide, but this time 
they stick together a$er the collision and come to a halt. 
Clearly, the total momentum and the total kinetic energy 
are both zero a$er the collision, since neither mass is 
moving. We have:
 Before collision A$er collision
momentum 0 0
kinetic energy 1

2 mv2 0

A
v v

B A B

before a!erpositive
direction

m mmm

Figure 6.9 An inelastic collision between two identical 
objects. The trolleys are stationary a#er the collision.

4 Copy Table 6.1 below, choosing the correct words 
from each pair.

Type of collision perfectly 
elastic 

inelastic 

Momentum conserved / 
not conserved 

conserved / 
not conserved 

Kinetic energy conserved /
not conserved 

conserved / 
not conserved 

Total energy conserved / 
not conserved

conserved / 
not conserved

Table 6.1 For Question 4.

Solving collision problems
We can use the idea of conservation of momentum to solve 
numerical problems, as illustrated by Worked example 2.

QUESTION
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Explosions and crash-landings
!ere are situations where it may appear that momentum 
is being created out of nothing, or that it is disappearing 
without trace. Do these contradict the principle of 
conservation of momentum?

!e rockets shown in Figure 6.12 rise high into the sky. 
As they start to fall, they send out showers of chemical 
packages, each of which explodes to produce a brilliant 
sphere of burning chemicals. Material (ies out in all 
directions to create a spectacular e#ect.

Does an explosion create momentum out of nothing? 
!e important point to note here is that the burning 
material spreads out equally in all directions. Each tiny 
spark has momentum, but for every spark, there is another 
moving in the opposite direction, i.e. with opposite 
momentum. Since momentum is a vector quantity, the 
total amount of momentum created is zero.

5 Figure 6.11 shows two identical balls A and B 
about to make a head-on collision. A#er the 
collision, ball A rebounds at a speed of 1.5 m s−1 
and ball B rebounds at a speed of 2.5 m s−1. The 
mass of each ball is 4.0 kg.
a Calculate the momentum of each ball before 

the collision.
b Calculate the momentum of each ball a#er the 

collision.
c Is the momentum conserved in the collision?
d Show that the total kinetic energy of the two 

balls is conserved in the collision.
e Show that the relative speed of the balls is the 

same before and a#er the collision.

  Figure 6.11  
For Question 5. 

6 A trolley of mass 1.0 kg is moving at 2.0 m s−1. It 
collides with a stationary trolley of mass 2.0 kg. 
This second trolley moves o" at 1.2 m s−1.
a Draw ‘before’ and ‘a#er’ diagrams to show the 

situation.
b Use the principle of conservation of 

momentum to calculate the speed of the first 
trolley a#er the collision. In what direction 
does it move?

1.5 m s–12.5 m s–1

A B

2 In the game of bowls, a player rolls a large ball 
towards a smaller, stationary ball. A large ball of mass 
5.0 kg moving at 10.0 m s−1 strikes a stationary ball of 
mass 1.0 kg. The smaller ball flies o" at 10.0 m s−1.
a Determine the final velocity of the large ball a#er 

the impact.
b Calculate the kinetic energy ‘lost’ in the impact.

 Step 1 Draw two diagrams, showing the situations 
before and a#er the collision. Figure 6.10 shows the 
values of masses and velocities; since we don’t know 
the velocity of the large ball a#er the collision, this is 
shown as v. The direction from le# to right has been 
assigned the ‘positive’ direction.

 Step 2 Using the principle of conservation of 
momentum, set up an equation and solve for the 
value of v:
total momentum before collision 

= total momentum a#er collision
 (5.0 × 10) + (1.0 × 0) = (5.0 × v) + (1.0 × 10)
 50 + 0 = 5.0v  + 10

 v  =  
40
5.0  = 8.0 m s−1

 So the speed of the large ball decreases to 8.0 m s−1 
a#er the collision. Its direction of motion is 
unchanged – the velocity remains positive.

 Step 3 Knowing the large ball’s final velocity, 
calculate the change in kinetic energy during the 
collision:

total k.e. before collision =  12  × 5.0 × 102 + 0 = 250 J

total k.e. a#er collision =  12  × 5.0 × 8.02 +  12  × 1.0 × 102 
 =  210 J
k.e. ‘lost’ in the collision = 250 J − 210 J = 40 J

 This lost kinetic energy will appear as internal 
energy (the two balls get warmer) and as sound 
energy (we hear the collision between the balls).

before a!er

5.0 kg 1.0 kg 5.0 kg 1.0 kg 

v

positive
direction

10 m s–1 10 m s–1

Figure 6.10 When solving problems involving 
collisions, it is useful to draw diagrams showing the 
situations before and a#er the collision. Include the 
values of all the quantities that you know.

WORKED EXAMPLE QUESTIONS
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Down to Earth
If you push a large rock over a cli#, its speed increases as it 
falls. Where does its momentum come from? And when it 
lands, where does its momentum disappear to?

!e rock falls because of the pull of the Earth’s 
gravity on it. !is force is its weight and it makes the 
rock accelerate towards the Earth. Its weight does work 
and the rock gains kinetic energy. It gains momentum 
downwards. Something must be gaining an equal amount 
of momentum in the opposite (upward) direction. It is 
the Earth, which starts to move upwards as the rock falls 
downwards. !e mass of the Earth is so great that its 
change in velocity is small – far too small to be noticeable.

When the rock hits the ground, its momentum 
becomes zero. At the same instant, the Earth also stops 
moving upwards. !e rock’s momentum cancels out the 
Earth’s momentum. At all times during the rock’s fall and 
crash-landing, momentum has been conserved.

If a rock of mass 60 kg is falling towards the Earth at a 
speed of 20 m s−1, how fast is the Earth moving towards it? 
Figure 6.13 shows the situation. !e mass of the Earth is 
6.0 × 1024 kg. We have:

total momentum of Earth and rock = 0
Hence:

(60 × 20) + (6.0 × 1024 × v) = 0

v = −2.0 × 10−22 m s−1

!e minus sign shows that the Earth’s velocity is in the 
opposite direction to that of the rock. !e Earth moves very 
slowly indeed. In the time of the rock’s fall, it will move 
much less than the diameter of the nucleus of an atom!

At the same time, kinetic energy is created in an 
explosion. Burning material (ies outwards; its kinetic 
energy has come from the chemical potential energy 
stored in the chemical materials before they burn.

More fireworks
A roman candle "res a jet of burning material up into the 
sky. !is is another type of explosion, but it doesn’t send 
material in all directions. !e "rework tube directs the 
material upwards. Has momentum been created out of 
nothing here?

Again, the answer is no. !e chemicals have 
momentum upwards, but at the same time, the roman 
candle pushes downwards on the Earth. An equal amount 
of downwards momentum is given to the Earth. Of course, 
the Earth is massive, and we don’t notice the tiny change 
in its velocity which results.

Figure 6.12 These exploding rockets produce a spectacular 
display of bright sparks in the night sky. 

 

 20 m s–1 

mass of Earth = 6.0 × 1024 kg   
 

v = ?   

60 kg 

Figure 6.13 The rock and Earth gain momentum in opposite 
directions. 
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At the same time, each ball gains momentum in 
the sideways direction, because each has a sideways 
component of velocity – the white ball to the right, and the 
red ball to the le$. !ese must be equal in magnitude and 
opposite in direction, otherwise we would conclude that 
momentum had been created out of nothing. !e red ball 
moves at a greater angle, but its velocity is less than that of 
the white ball, so that the component of its velocity at right 
angles to the original track is the same as the white ball’s.

Figure 6.15a shows the momentum of each ball before 
and a$er the collision. We can draw a vector triangle to 
represent the changes of momentum in this collision  
(Figure 6.15b). !e two momentum vectors a$er the collision 
add up to equal the momentum of the white ball before 
the collision. !e vectors form a closed triangle because 
momentum is conserved in this two-dimensional collision. 

Collisions in two dimensions
It is rare that collisions happen in a straight line – in one 
dimension. Figure 6.14 shows a two-dimensional collision 
between two snooker balls. From the multiple images, we 
can see how the velocities of the two balls change:

 ■ At first, the white ball is moving straight forwards. When 
it hits the red ball, it moves o" to the right. Its speed 
decreases; we can see this because the images get closer 
together.

 ■ The red ball moves o" to the le#. It moves o" at a bigger 
angle than the white ball, but more slowly – the images are 
even closer together.

How can we understand what happens in this collision, 
using the ideas of momentum and kinetic energy?

At "rst, only the white ball has momentum, and this 
is in the forward direction. During the collision, this 
momentum is shared between the two balls. We can 
see this because each has a component of velocity in the 
forward direction.

Figure 6.14 The white ball strikes the red ball a glancing blow. 
The two balls move o" in di"erent directions. 

Figure 6.15 a These vectors represent the momenta of the 
colliding balls shown in Figure 6.14. b The closed vector 
triangle shows that momentum is conserved in the collision. 

Components of momentum
Momentum is a vector quantity and so we can split it into 
components in order to solve problems.

Worked example 3 shows how to "nd an unknown 
velocity.

Worked example 4 shows how to demonstrate that 
momentum has been conserved in a two-dimensional 
collision.

7 Discuss whether momentum is conserved in each 
of the following situations.
a A star explodes in all directions – a supernova.
b You jump up from a trampoline. As you go 

up, your speed decreases; as you come down 
again, your speed increases.

8 A ball of mass 0.40 kg is thrown at a wall. It strikes 
the wall with a speed of 1.5 m s−1 perpendicular to 
the wall and bounces o" the wall with a speed of 
1.2 m s−1. Explain the changes in momentum and 
energy which happen in the collision between the 
ball and the wall. Give numerical values where 
possible.

a b

mvwhite (before)

mvwhite (before)

mvwhite (a!er)

mvwhite (a!er)

mvred (a!er)

mvred (a!er)

QUESTIONS
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3 A white ball of mass m = 1.0 kg and moving with initial 
speed u =  0.5 m s−1 collides with a stationary red ball of 
the same mass. They move o" so that each has the same 
speed and the angle between their paths is 90°. What is 
their speed?

 Step 1 Draw a diagram to show the velocity vectors of 
the two balls, before and a#er the collision (Figure 6.16). 
We will show the white ball initially travelling along the 
y-direction.

 Because we know that the two balls have the same final 
speed v, their paths must be symmetrical about the 
y-direction. Since their paths are at 90° to one other, 
each must be at 45° to the y-direction.

 Step 2 We know that momentum is conserved in the 
y-direction. Hence we can say:
initial momentum of white ball in y-direction
 =  final component of momentum of white ball  

 in y-direction
 +  final component of momentum of red ball  

 in y-direction

 This is easier to understand using symbols:
mu = mvy + mvy

 where vy is the component of v in the y-direction. The 
right-hand side of this equation has two identical 
terms, one for the white ball and one for the red. We can 
simplify the equation to give:
mu = 2mvy

 Step 3 The component of v in the y-direction is v cos 45°. 
Substituting this, and including values of m and u, gives
0.5 = 2v cos 45°

 and hence

v  =  
0.5

2 cos 45°  ≈ 0.354 m s−1

 So each ball moves o" at 0.354 m s−1 at an angle of 45° to 
the initial direction of the white ball.

4 Figure 6.17 shows the momentum vectors for particles 
1 and 2, before and a#er a collision. Show that 
momentum is conserved in this collision.

 Step 1 Consider momentum changes in the y-direction.

 Before collision: 
momentum = 0 

 (because particle 1 is moving in the x-direction and 
particle 2 is stationary).

 A#er collision:
component of momentum of particle 1 
 = 3.0 cos 36.9° ≈ 2.40 kg m s−1 upwards
component of momentum of particle 2 
 = 4.0 cos 53.1° ≈ 2.40 kg m s−1 downwards

 These components are equal and opposite and hence 
their sum is zero. Hence momentum is conserved in the 
y-direction.

 Step 2 Consider momentum changes in the x-direction.
Before collision: momentum = 5.0 kg m s−1 to the right
A#er collision:
component of momentum of particle 1
 = 3.0 cos 53.1° ≈ 1.80 kg m s−1 to the right
component of momentum of particle 2
 = 4.0 cos 36.9° ≈ 3.20 kg m s−1 to the right
total momentum to the right = 5.0 kg m s−1

 Hence momentum is conserved in the x-direction.

 Step 3 An alternative approach would be to draw a 
vector triangle similar to Figure 6.15b. In this case, 
the numbers have been chosen to make this easy; the 
vectors form a 3–4–5 right-angled triangle.

 Because the vectors form a closed triangle, we can 
conclude that:
momentum before collision = momentum a#er collision 
i.e. momentum is conserved.

Figure 6.16 Velocity vectors for the white and red balls. 

vwhite (before)

vwhite (a!er)
45°45°

vred (a!er)

y

particle 1

53.1°

36.9°

5.0 kg m s−1

particle 1

3.0 kg m s−1

particle 2

4.0 kg m s−1

y

Figure 6.17 Momentum vectors: particle 1 has come 
from the le# and collided with particle 2. 

WORKED EXAMPLES
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Momentum and Newton’s laws
!e big ideas of physics are o$en very simple; that is to 
say, it takes only a few words to express them and they can 
be applied in many situations. However, ‘simple’ does not 
usually mean ‘easy’. Concepts such as force, energy and 
voltage, for example, are not immediately obvious. !ey 
usually took someone to make a giant leap of imagination 
to "rst establish them. !en the community of physicists 
spent decades worrying away at them, re"ning them until 
they are the fundamental ideas which we use today.

Take Isaac Newton’s work on motion. He published 
his ideas in a book commonly known as the Principia 
(see Figure 6.20); its full title translated from Latin is 
Mathematical Principles of Natural Philosophy.

 9 A snooker ball strikes a stationary ball. The 
second ball moves o" sideways, at 60° to the 
initial path of the first ball. 

  Use the idea of conservation of momentum to 
explain why the first ball cannot travel in its 
initial direction a#er the collision. Illustrate your 
answer with a diagram.

 10 Look back to Worked example 4 above. Draw the 
vector triangle which shows that momentum 
is conserved in the collision described in the 
question. Show the value of each angle in the 
triangle.

 11 Figure 6.18 shows the momentum vectors for two 
particles, 1 and 2, before and a#er a collision. 
Show that momentum is conserved in this 
collision.

Figure 6.18 For Question 11. 

 12 A snooker ball collides with a second identical 
ball as shown in Figure 6.19.
a Determine the components of the velocity of 

the first ball in the x- and y-directions.
b Hence determine the components of the 

velocity of the second ball in the x- and 
y-directions.

c Hence determine the velocity (magnitude and 
direction) of the second ball.

Figure 6.19 For Question 12. 

Figure 6.20 The title page of Newton’s Principia, in which he 
outlined his theories of the laws that govern the motion of 
objects.

!e Principia represents the results of 20 years of 
thinking. Newton was able to build on Galileo’s ideas and 
he was in correspondence with many other scientists and 
mathematicians. Indeed, there was an ongoing feud with 
Robert Hooke as to who was the "rst to come up with 
certain ideas. Among scientists, this is known as ‘priority’, 
and publication is usually taken as proof of priority.

Newton wanted to develop an understanding of the 
idea of ‘force’. You may have been told in your early 
studies of science that ‘a force is a push or a pull’. !at 
doesn’t tell us very much. Newton’s idea was that forces 
are interactions between bodies and that they change the 
motion of the body that they act on. Forces acting on an 
object can produce acceleration. For an object of constant 
mass, this acceleration is directly proportional to the 
resultant force acting on the object. !at is much more like 
a scienti"c de"nition of force.

particle 1 60°

60°2.40 kg m s−1

particle 1

2.40 kg m s−1

particle 2

2.40 kg m s−1

ball 1
20°u = 1.00 m s−1

v = 0.80 m s−1

ball 1

x

QUESTIONS
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If the forces acting on an object are balanced, there 
is no resultant force and the object’s momentum will 
remain constant. If a resultant force acts on an object, its 
momentum (velocity and/or direction) will change. !e 
equation above gives us another way of stating Newton’s 
second law of motion:

The resultant force acting on an object is equal to the rate 
of change of its momentum. The resultant force and the 
change in momentum are in the same direction.

!is statement e#ectively de"nes what we mean by a force; 
it is an interaction that causes an object’s momentum to 
change. So, if an object’s momentum is changing, there 
must be a force acting on it. We can "nd the size and 
direction of the force by measuring the rate of change of 
the object’s momentum:

 force = rate of change of momentum

 F =  
Δp
Δt

Worked example 5 shows how to use this equation.

Understanding motion
In Chapter 3, we looked at Newton’s laws of motion. We 
can get further insight into these laws by thinking about 
them in terms of momentum.

Newton’s first law of motion
In everyday speech, we sometimes say that something has 
momentum when we mean that it has a tendency to keep 
on moving of its own free will. An oil tanker is di)cult 
to stop at sea, because of its momentum. We use the same 
word in a "gurative sense: ‘!e election campaign is gaining 
momentum.’ !is idea of keeping on moving is just what we 
discussed in connection with Newton’s !rst law of motion:

An object will remain at rest or keep travelling at constant 
velocity unless it is acted on by a resultant force.

An object travelling at constant velocity has constant 
momentum. Hence the "rst law is really saying that the 
momentum of an object remains the same unless the 
object experiences an external force.

Newton’s second law of motion
Newton’s second law of motion links the idea of the 
resultant force acting on an object and its momentum.  
A statement of Newton’s second law is:

The resultant force acting on an object is directly 
proportional to the rate of change of the linear 
momentum of that object. The resultant force and the 
change in momentum are in the same direction.

Hence:
resultant force  ∝ rate of change of momentum

!is can be written as:

F  ∝ Δp
Δt

where F is the resultant force and Δp is the change 
in momentum taking place in a time interval of Δt. 
(Remember that the Greek letter delta, Δ, is a shorthand for 
‘change in …’, so Δp means ‘change in momentum’.) !e 
changes in momentum and force are both vector quantities, 
hence these two quantities must be in the same direction.

!e unit of force (the newton, N) is de"ned to make the 
constant of proportionality equal to one, so we can write 
the second law of motion mathematically as:

F = Δp
Δt

5 Calculate the average force acting on a 900 kg car 
when its velocity changes from 5.0 m s−1 to 30 m s−1 in 
a time of 12 s.

 Step 1 Write down the quantities given:
m = 900 kg
initial velocity u = 5.0 m s−1

Δt = 12 s

 Step 2 Calculate the initial momentum and the final 
momentum of the car:
momentum = mass × velocity
initial momentum = mu = 900 × 5.0 = 4500 kg m s−1

final momentum = mv = 900 × 30 = 27 000 kg m s−1

 Step 3 Use Newton’s second law of motion to 
calculate the average force on the car:

F =  
Δp
Δt

 =  
27 500 − 4500

12

 =  1875 N ≈ 1900  N

 The average force acting on the car is about 1.9 kN.

WORKED EXAMPLE
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Newton’s third law of motion
Newton’s third law of motion is about interacting objects. 
! ese could be two magnets attracting or repelling each 
other, two electrons repelling each other, etc. Newton’s 
third law states:

When two bodies interact, the forces they exert on each 
other are equal and opposite.

How can we relate this to the idea of momentum? Picture 
holding two magnets, one in each hand. You gradually 
bring them towards each other (Figure 6.21) so that they 
start to attract each other. Each feels a force pulling it 
towards the other. ! e two forces are the same size, even if 
one magnet is stronger than the other. Indeed, one magnet 
could be replaced by an unmagnetised piece of steel and 
they would still attract each other equally.

If you release the magnets, they will gain momentum 
as they are pulled towards each other. One gains 
momentum to the le$  while the other gains equal 
momentum to the right.

Each is acted on by the same force, and for the same 
time. Hence momentum is conserved.

A special case of Newton’s second law of 
motion
Imagine an object of constant mass m acted upon by a 
resultant force F. ! e force will change the momentum of 
the object. According to Newton’s second law of motion, 
we have:

F = Δp
Δt  = mv − mu

t
where u is the initial velocity of the object, v is the " nal 
velocity of the object and t is the time taken for the change 
in velocity. ! e mass m of the object is a constant; hence 
the above equation can be rewritten as:

F = m(v − u)
t  = m  v − u

t
! e term in brackets on the right-hand side is the 
acceleration a of the object. ! erefore a special case of 
Newton’s second law is:

F = ma
We have already met this equation in Chapter 3. In 
Worked example 5, you could have determined the average 
force acting on the car using this simpli" ed equation for 
Newton’s second law of motion. Remember that the 
equation F = ma is a special case of F = Δp

Δt  which only 
applies when the mass of the object is constant. ! ere are 
situations where the mass of an object changes as it moves, 
for example a rocket, which burns a phenomenal amount 
of chemical fuel as it accelerates upwards.

 13 A car of mass 1000 kg is travelling at a velocity of 
10 m s−1. It accelerates for 15 s, reaching a velocity of 
24 m s−1. Calculate:
a the change in the momentum of the car in the 15 s 

period
b the average force acting on the car as it 

accelerates.

 14 A ball is kicked by a footballer. The average force 
on the ball is 240 N and the impact lasts for a time 
interval of 0.25 s.
a Calculate the change in the ball’s momentum.
b State the direction of the change in momentum.

 15 Water pouring from a broken pipe lands on a flat 
roof. The water is moving at 5.0 m s−1 when it strikes 
the roof. The water hits the roof at a rate of 10 kg s−1. 
Calculate the force of the water hitting the roof. 
(Assume that the water does not bounce as it hits 
the roof. If it did bounce, would your answer be 
greater or smaller?)

 16 A golf ball has a mass of 0.046 kg. The final velocity 
of the ball a# er being struck by a golf club is 50 m s−1. 
The golf club is in contact with the ball for a time of 
1.3 ms. Calculate the average force exerted by the 
golf club on the ball.

A

B

N

S

force of B on A

force of A on B

Figure 6.21 Newton’s third law states that the forces these two 
magnets exert one each other must be equal and opposite. 

QUESTIONS
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End-of-chapter questions
1 An object is dropped and its momentum increases as it falls toward the ground. Explain how the 

law of conservation of momentum and Newton’s third law of motion can be applied to this situation. [2]

2 A ball of mass 2 kg, moving at 3.0 m s−1, strikes a wall and rebounds with the same speed. State and 
explain whether there is a change in:
a the momentum of the ball [3]
b the kinetic energy of the ball. [1]

3 a Define linear momentum. [1]
b Determine the base units of linear momentum in the SI system. [1]
c A car of mass 900 kg starting from rest has a constant acceleration of 3.5 m s−2. Calculate its momentum 

a# er it has travelled a distance of 40 m. [2]
d Figure 6.22 shows two identical objects about to make a head-on collision. The objects stick together 

during the collision. Determine the final speed of the objects. State the direction in which they move. [3]

Figure 6.22 For End-of-chapter Question 3. 

Summary
 ■ Linear momentum is the product of mass and velocity:

momentum = mass × velocity or p = mv

 ■ The principle of conservation of momentum:

For a closed system, in any direction the total 
momentum before an interaction (e.g. collision) is 
equal to the total momentum a# er the interaction.

 ■ In all interactions or collisions, momentum and total 
energy are conserved.

 ■ Kinetic energy is conserved in a perfectly elastic 
collision; relative speed is unchanged in a perfectly 
elastic collision.

 ■ In an inelastic collision, kinetic energy is not conserved. 
It is transferred into other forms of energy (e.g. heat or 
sound). Most collisions are inelastic.

 ■ Newton’s first law of motion: An object will remain at 
rest or keep travelling at constant velocity unless it is 
acted on by a resultant force.

 ■ Newton’s second law of motion: The resultant force 
acting on a body is equal to the rate of change of its 
momentum:

resultant force = rate of change of momentum 

or 

F = Δp
Δt

 ■ Newton’s third law of motion: When two bodies 
interact, the forces they exert on each other are equal 
and opposite.

 ■ The equation F = ma is a special case of Newton’s 
second law of motion when mass m remains constant.

4.0 kg 4.0 kg

2.0 m s–1 3.0 m s–1

Cambridge International AS Level Physics
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4 a Explain what is meant by an:
i elastic collision [1]
ii inelastic collision. [1]

b A snooker ball of mass 0.35 kg hits the side of a snooker table at right angles and bounces o"  also 
at right angles. Its speed before collision is 2.8 m s−1 and its speed a# er is 2.5 m s−1. Calculate 
the change in the momentum of the ball. [2]

c Explain whether or not momentum is conserved in the situation described in b. [3]

5 A car of mass 1100 kg is travelling at 24 m s−1. The driver applies the brakes and the car decelerates 
uniformly and comes to rest in 20 s.
a Calculate the change in momentum of the car. [2]
b Calculate the braking force on the car. [2]
c Determine the braking distance of the car. [2]

6 A marble of mass 100 g is moving at a speed of 0.40 m s−1 in the x-direction.
a Calculate the marble’s momentum. [2]
 The marble strikes a second, identical marble. Each moves o"  at an angle of 45° to the x-direction.
b Use the principle of conservation of momentum to determine the speed of each marble a# er the collision. [3]
c Show that kinetic energy is conserved in this collision. [2]

7 A cricket bat strikes a ball of mass 0.16 kg travelling towards it. The ball initially hits the bat at a speed 
of 25 m s−1 and returns along the same path with the same speed. The time of impact is 0.0030 s.
a Determine the change in momentum of the cricket ball. [2]
b Determine the force exerted by the bat on the ball. [2]
c Describe how the laws of conservation of energy and momentum apply to this impact and state 

whether the impact is elastic or inelastic. [4]

8 a  State the principle of conservation of momentum and state the conditions under which it is valid. [2]
b An arrow of mass 0.25 kg is fired horizontally towards an apple of mass 0.10 kg which is hanging 

on a string (Figure 6.23).

Figure 6.23 For End-of-chapter Question 8. 

 The horizontal velocity of the arrow as it enters the apple is 30 m s−1. The apple was initially at rest 
and the arrow sticks in the apple.
i Calculate the horizontal velocity of the apple and arrow immediately a# er the impact. [2]
ii Calculate the change in momentum of the arrow during the impact. [2]
iii Calculate the change in total kinetic energy of the arrow and apple during the impact. [2]
iv An identical arrow is fired at the centre of a stationary ball of mass 0.25 kg. The collision is 

perfectly elastic. Describe what happens and state the relative speed of separation of the 
arrow and the ball. [2]

30 m s–1
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 9 a State what is meant by:
i a perfectly elastic collision [1]
ii a completely inelastic collision. [1]

b A stationary uranium nucleus disintegrates, emitting an alpha-particle of mass 6.65 × 10−27 kg and 
another nucleus X of mass 3.89 × 10−25 kg (Figure 6.24).

Figure 6.24 For End-of-chapter Question 9. 

i Explain why the alpha-particle and nucleus X must be emitted in exactly opposite directions. [2]
ii Using the symbols vα and vX for velocities, write an equation for the conservation of momentum 

in this disintegration. [1]
iii Using your answer to ii, calculate the ratio vα /vX a# er the disintegration. [1]

10 a State two quantities that are conserved in an elastic collision. [1]
b A machine gun fires bullets of mass 0.014 kg at a speed of 640 m s−1.

i Calculate the momentum of each bullet as it leaves the gun. [1]
ii Explain why a soldier holding the machine gun experiences a force when the gun is firing. [2]
iii The maximum steady horizontal force that a soldier can exert on the gun is 140 N. Calculate the 

maximum number of bullets that the gun can fire in one second. [2]

11 Two railway trucks are travelling in the same direction 
and collide. The mass of truck X is 2.0 × 104 kg and the 
mass of truck Y is 3.0 × 104 kg. Figure 6.25 shows how 
the velocity of each truck varies with time.

a Copy and complete the table. [6]

Change in momen-
tum / kg m s−1

Initial kinetic 
energy / J

Final kinetic 
energy / J

truck X
truck Y

b State and explain whether the collision of the two trucks is an example of an elastic collision.  [2]
c Determine the force that acts on each truck during the collision. [2]

uranium nucleus
before decay

X

alpha-particle

2.00

X
4

3

2

Ve
lo

ci
ty

 / 
m

s–1

1

0

5

Y X

Y

3.6

Time / s
Figure 6.25 For End-of-chapter Question 11.
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Chapter 7:
Matter and 
materials

Learning outcomes
You should be able to:

 ■ define density
 ■ define pressure and calculate the pressure in a fluid
 ■ understand how tensile and compressive forces cause 

deformation
 ■ describe the behaviour of springs and understand 

Hooke’s law
 ■ distinguish between elastic and plastic deformation
 ■ define and use stress, strain and the Young modulus
 ■ describe an experiment to measure the Young modulus
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Springy stu!
In everyday life, we make great use of elastic 
materials. The term elastic means springy; that is, the 
material deforms when a force is applied and returns 
to its original shape when the force is removed. Rubber 
is an elastic material. This is obviously important for 
a bungee jumper (Figure 7.1). The bungee rope must 
have the correct degree of elasticity. The jumper must 
be brought gently to a halt. If the rope is too sti#, the 
jumper will be jerked violently so that the deceleration 
is greater than their body can withstand. On the other 
hand, if the rope is too stretchy, they may bounce up 
and down endlessly, or even strike the ground.

In this chapter we will look at how forces can change 
the shape of an object. Before that, we will look at two 
important quantities, density and pressure.

Density
Density is a property of matter. It tells us about how 
concentrated the matter is in a particular material. Density 
is a constant for a given material under speci"c conditions.

Density is de"ned as the mass per unit volume of a 
substance:

density = mass
volume

ρ = mv
!e symbol used here for density, ρ, is the Greek letter rho.

!e standard unit for density in the SI system is kg m−3, 
but you may also "nd values quoted in g cm−3. It is useful 
to remember that these units are related by:

1000 kg m−3 = 1 g cm−3

and that the density of water is approximately 1000 kg m−3.

Figure 7.1 The sti"ness and elasticity of rubber 
are crucial factors in bungee jumping.

Pressure
A (uid (liquid or gas) exerts pressure on the walls of its 
container, or on any surface with which it is in contact. A 
big force on a small area produces a high pressure.

Pressure is defined as the normal force acting per unit 
cross-sectional area. 
We can write this as a word equation:

 pressure = 
normal force

cross-sectional area

 p = 
F
A

Force is measured in newtons and area is measured in 
square metres. !e units of pressure are thus newtons per 
square metre (N m−2), which are given the special name of 
pascals (Pa).

1 Pa = 1 N m−2

1 A cube of copper has a mass of 240 g. Each side of 
the cube is 3.0 cm long. Calculate the density of 
copper in g cm−3 and in kg m−3.

2 The density of steel is 7850 kg m−3. Calculate the 
mass of a steel sphere of radius 0.15 m. (First 
calculate the volume of the sphere using the 
formula V = 43πr 3 and then use the density equation.)

3 A chair stands on four feet, each of area 10 cm2. 
The chair weighs 80 N. Calculate the pressure it 
exerts on the floor.

4 Estimate the pressure you exert on the floor when 
you stand on both feet. (You could draw a rough 
rectangle around both your feet placed together to 
find the area in contact with the floor. You will also 
need to calculate your weight from your mass.)

QUESTIONS
QUESTIONS
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Pressure in a fluid
!e pressure in a (uid (a liquid or gas) increases with 
depth. Divers know this: the further down they dive, the 
greater the water pressure acting on them. Pilots know 
this: the higher they (y, the lower is the pressure of the 
atmosphere. !e atmospheric pressure we experience 
down here on the surface of the Earth is due to the weight 
of the atmosphere above us, pressing downwards. It is 
pulled downwards by gravity.

!e pressure in a (uid depends on three factors:
 ■ the depth h below the surface
 ■ the density ρ of the fluid
 ■ the acceleration due to gravity, g.

In fact, pressure p is proportional to each of these and we 
have:

 pressure = density × acceleration due to gravity × depth
 p = ρgh

We can derive this relationship using Figure 7.2. !e 
force acting on the shaded area A on the bottom of the 
tank is caused by the weight of water above it, pressing 
downwards. We can calculate this force and hence the 
pressure as follows:

volume of water = A × h

mass of water = density × volume = ρ × A × h

1 A cube of side 0.20 m floats in water with 0.15 m 
below the surface of the water. The density of water 
is 1000 kg m−3. Calculate the pressure of the water 
acting on the bottom surface of the cube and the force 
upwards on the cube caused by this pressure. (This force 
is the upthrust on the cube.)

 Step 1 Use the equation for pressure:
p =  ρ × g × h = 1000 × 9.81 ×  0.15 = 1470 Pa

 Step 2 Calculate the area of the base of the cube, and 
use this area in the equation for force.
area of base of cube = 0.2 × 0.2 = 0.04 m2

force = pressure × area = 1470 ×  0.04 = 58.8 N

2 Figure 7.3 shows a manometer used to measure 
the pressure of a gas supply. Calculate the pressure 
di"erence between the gas inside the pipe and 
atmospheric pressure.

 Step 1 Determine the di"erence in height h of the water 
on the two sides of the manometer.
h = 60 − 30 = 30 cm

 Step 2 Because the level of water on the side of the 
tube next to the gas pipe is lower than on the side open 
to the atmosphere, the pressure in the gas pipe is above 
atmospheric pressure.
pressure di"erence = ρ × g × h = 1000 × 9.81 × 0.30 = 2940 Pa

h

A

density of
liquid ρ    

Figure 7.2 The weight of water in a tank exerts pressure on its 
base.

atmosphere
scale
in cm

gas
pipe

80

60

40

20

0

h

water of density
1000 kg m–3

Figure 7.3 For Worked example 2.

weight of water = mass × g = ρ × A × h × g

 pressure = force
area  = ρ × A × h × gA

 = ρ × g × h

5 Calculate the pressure of water on the bottom of 
a swimming pool if the depth of water in the pool 
varies between 0.8 m and 2.4 m. (Density of  
water = 1000 kg m−3.) If atmospheric pressure is  
1.01 × 105 Pa, calculate the maximum total 
pressure at the bottom of the swimming pool.

6 Estimate the height of the atmosphere if 
atmospheric density at the Earth’s surface is 
1.29 kg m−3. (Atmospheric pressure = 101 kPa.)

QUESTIONS

WORKED EXAMPLES
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Compressive and tensile forces
A pair of forces is needed to change the shape of a spring. 
If the spring is being squashed and shortened, we say 
that the forces are compressive. More usually, we are 
concerned with stretching a spring, in which case the 
forces are described as tensile (Figure 7.4).

A

0
0

gradient = k

Extension, x

Fo
rc

e,
 F

Figure 7.7 Force–extension graph for a spring.

extension
       

force
load

Figure 7.6 Stretching a spring.

a

b

c

compressive
forces

tensile
forces

A

B

A

A

B

B
A

B

Figure 7.4 The e"ects of compressive and tensile forces.

Figure 7.5 Bending a straight wire or beam results in tensile 
forces along the upper surface (the outside of the bend) and 
compressive forces on the inside of the bend.

When a wire is bent, some parts become longer and 
are in tension while other parts become shorter and are in 
compression. Figure 7.5 shows that the line AA becomes 
longer when the wire is bent and the line BB becomes 
shorter. !e thicker the wire, the greater the compression 
and tension forces along its edges.

It is simple to investigate how the length of a helical 
spring is a#ected by the applied force or load. !e spring 
hangs freely with the top end clamped "rmly (Figure 7.6). 
A load is added and gradually increased. For each value of 
the load, the extension of the spring is measured. Note that 
it is important to determine the increase in length of the 
spring, which we call the extension. We can plot a graph of 
force against extension to "nd the sti#ness of the spring, as 
shown in Figure 7.7.

Hooke’s law
!e conventional way of plotting the results would be to 
have the force along the horizontal axis and the extension 
along the vertical axis. !is is because we are changing 
the force (the independent variable) and this results in 
a change in the extension (the dependent variable). !e 
graph shown in Figure 7.7 has extension on the horizontal 

axis and force on the vertical axis. !is is a departure from 
the convention because the gradient of the straight section 
of this graph turns out to be an important quantity, 
known as the force constant of the spring. For a typical 
spring, the "rst section of this graph OA is a straight line 
passing through the origin. !e extension x is directly 
proportional to the applied force (load) F. !e behaviour 
of the spring in the linear region OA of the graph can be 
expressed by the following equation:

 x ∝ F
or F = kx

where k is the force constant of the spring (sometimes 
called either the sti#ness or the spring constant of the 
spring). !e force constant is the force per unit extension. 
!e force constant k of the spring is given by the equation:

k = Fx
!e SI unit for the force constant is newtons per metre or 
N m−1. We can "nd the force constant k from the gradient 
of section OA of the graph:

k = gradient
A sti#er spring will have a larger value for the force 
constant k. Beyond point A, the graph is no longer a 
straight line; its gradient changes and we can no longer use 
the equation F = kx. 
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If a spring or anything else responds to a pair of tensile 
forces in the way shown in section OA of Figure 7.7, we say 
that it obeys Hooke’s law:

A material obeys Hooke’s law if the extension produced in 
it is proportional to the applied force (load). 

If you apply a small force to a spring and then release 
it, it will return to its original length. !is behaviour is 
described as ‘elastic’. However, if you apply a large force, 
the spring may not return to its original length. It has 
become permanently deformed. !e force beyond which 
the spring becomes permanently deformed is known as 
the elastic limit.

7 Figure 7.8 shows the force–extension graphs for 
four springs, A, B, C and D.
a State which spring has the greatest value of 

force constant.
b State which is the least sti".
c State which of the four springs does not obey 

Hooke’s law.

B
C

D

A

0
0

Extension
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rc

e

Figure 7.8 Force–extension graphs for four 
di"erent springs.

BOX 7.1: Investigating springs

Springs can be combined in di"erent ways  
(Figure 7.9): end-to-end (in series) and side-by-
side (in parallel). Using identical springs, you can 
measure the force constant of a single spring, and of 
springs in series and in parallel. Before you do this, 
predict the outcome of such an experiment. If the 
force constant of a single spring is k, what will be the 
equivalent force constant of:

 ■ two springs in series?
 ■ two springs in parallel?

This approach can be applied to combinations of 
three or more springs.

Figure 7.9 Two ways to combine a pair of springs:  
a in series; b in parallel.

a b

clamp metre rule sticky tape
pointer pulley

wire

load

Figure 7.10 Stretching a wire in the laboratory. WEAR EYE 
PROTECTION and be careful not to overload the wire.

Stretching materials
When we determine the force constant of a spring, we 
are only "nding out about the sti#ness of that particular 
spring. However, we can compare the sti#ness of di#erent 
materials. For example, steel is sti#er than copper, but 
copper is sti#er than lead.

Stress and strain
Figure 7.10 shows a simple way of assessing the sti#ness of 
a wire in the laboratory. As the long wire is stretched, the 
position of the sticky tape pointer can be read from the 
scale on the bench.

Why do we use a long wire? Obviously, this is because 
a short wire would not stretch as much as a long one. We 
need to take account of this in our calculations, and we  
do this by calculating the strain produced by the load.  
!e strain is de"ned as the fractional increase in the 
original length of the wire. !at is:

strain =  extension
original length

QUESTION
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